Volume 8, Issue 4 (11-2023)                   J Res Dent Maxillofac Sci 2023, 8(4): 257-264 | Back to browse issues page

Ethics code: 1
Clinical trials code: 1


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tavakolinejad Z, Sheikh Fathollahi M, Mirzaei F, Mirzaei F, Mirzaei E. Comparison of Antibacterial Properties of an Orthodontic Composite Containing Silver and Amor-phous Tricalcium Phosphate Nanoparticles against Streptococcus mutans: An In Vitro Study. J Res Dent Maxillofac Sci 2023; 8 (4) :257-264
URL: http://jrdms.dentaliau.ac.ir/article-1-491-en.html
1- Department of Orthodontics, Faculty of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
2- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
3- Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
4- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
5- Private Dentistry Practice, Yazd, Iran , mirzaei.elham2072@gmail.com
Abstract:   (783 Views)
Background and Aim: Formation of white spot lesions, due to plaque accumulation and bacterial biofilm growth, is a common complication in orthodontic treatment. The present study aimed to compare the antibacterial properties of an orthodontic composite containing silver (Ag) and amorphous tricalcium phosphate (ATCP) nanoparticles against Streptococcus mutans (S. mutans).  
Materials and Methods: In this in vitro study, 0.3% w/w Ag nanoparticles and 3% w/w ATCP nanoparticles were added to Transbond XT orthodontic composite. Totally, 48 composite discs were fabricated in three groups) n=16). The experimental groups included composite specimens containing nanoparticles and the control group included composite specimens without nanoparticles. The antibacterial effects of composite discs with and without nanoparticles against S. mutans (ATCC 35668) in the three groups were assessed by the direct contact test after 24 hours and 30 days. The number of bacterial colonies was visually counted in the three groups and compared. Data were analyzed by one-way ANOVA and Duncan's multiple comparisons test. P-values under 0.05 were considered significant.
Results: The antibacterial properties of nano-composites significantly increased in both experimental groups of composites containing Ag and ATCP nanoparticles, compared to the control group (P<0.001). The highest antibacterial activity was observed in the orthodontic composite containing ATCP nanoparticles.
Conclusion: Addition of Ag and ATCP nanoparticles to orthodontic light-cure composite increases its antibacterial activity against S. mutans.  
Full-Text [PDF 783 kb]   (251 Downloads) |   |   Full-Text (HTML)  (164 Views)  
Type of Study: Original article | Subject: orthodontic

References
1. Sodagar A, Akhavan A, Hashemi E, Arab S, Pourhajibagher M, Sodagar K, et al. Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles. Progress in orthodontics. 2016;17(1):40. [DOI:10.1186/s40510-016-0153-x] [PMID] []
2. Behnaz M, Dalaie K, Mirmohammadsadeghi H, Salehi H, Rakhshan V, Aslani F. Shear bond strength and adhesive rem-nant index of orthodontic brackets bonded to enamel using adhesive systems mixed with TiO2 nanoparticles. Dental Press J Orthod. 2018 Aug 1;23(4):43.e1-43.e7. [DOI:10.1590/2177-6709.23.4.43.e1-7.onl] [PMID] []
3. Blöcher S, Frankenberger R, Hellak A, Schauseil M, Roggen-dorf MJ, Korbmacher-Steiner HM. Effect on enamel shear bond strength of adding microsilver and nanosilver particles to the primer of an orthodontic adhesive. BMC oral health. 2015;15(1):42. [DOI:10.1186/s12903-015-0024-8] [PMID] []
4. Mirhashemi AH, Bahador A, Kassaee MZ, Daryakenari G, Ah-mad-Akhoundi MS, Sodagar A. Antimicrobial Effect of Nano-Zinc Oxide and Nano-Chitosan Particles in Dental Composite Used in Orthodontics. J Med Bacteriol. 2013;2(3-4):1-10.
5. Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater. 2009 Feb;25(2):206-13. [DOI:10.1016/j.dental.2008.06.002] [PMID]
6. Sodagar A, Akhavan A, Arab S, Bahador A, Pourhajibagher M, Soudi A. Evaluation of the Effect of Propolis Nanoparticles on Antimicrobial Properties and Shear Bond Strength of Orthodon-tic Composite Bonded to Bovine Enamel. Front Dent. 2019;16(2):96-104. [DOI:10.18502/fid.v16i2.1360] [PMID] []
7. Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod. 2013 Oct;35(5):676-9. [DOI:10.1093/ejo/cjs073] [PMID]
8. Yassaei S, Nasr A, Zandi H, Motallaei MN. Comparison of anti-bacterial effects of orthodontic composites containing different nanoparticles on Streptococcus mutans at different times. Den-tal Press J Orthod. 2020 Mar;25(2):52-60. [DOI:10.1590/2177-6709.25.2.052-060.oar] [PMID] []
9. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and me-chanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil. 1983 Sep;10(5):373-81. [DOI:10.1111/j.1365-2842.1983.tb00133.x] [PMID]
10. Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials. 2005 Dec;26(34):7145-53. [DOI:10.1016/j.biomaterials.2005.05.014] [PMID]
11. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007Mar;23(3):343-62. [DOI:10.1016/j.dental.2006.01.022] [PMID]
12. Reddy AK, Kambalyal PB, Shanmugasundaram K, Rajesh V, Donthula S, Patil SR. Comparative Evaluation of Antimicrobial Efficacy of Silver, Titanium Dioxide and Zinc Oxide Nanoparticles against Streptococcus mutans. Pesqui Bras Odon-topediatria Clin Integr. 2018;18(1): e4150. [DOI:10.4034/PBOCI.2018.181.88]
13. Toodehzaeim MH, Zandi H, Meshkani H, Hosseinzadeh Firouzabadi A. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives. J Dent (Shiraz). 2018 Mar;19(1):1-5.
14. Hernández-Sierra JF, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén Ade J, Tapia-Pérez H, Castañón GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparti-cles of silver, zinc oxide, and gold. Nanomedicine. 2008 Sep;4(3):237-40. [DOI:10.1016/j.nano.2008.04.005] [PMID]
15. Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, Gorain B, Kesharwani P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl. 2018 Oct 1; 91: 881-98. [DOI:10.1016/j.msec.2018.05.069] [PMID]
16. Pal S, Tak YK, Song JM. Does the antibacterial activity of sil-ver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. J Appl Environ Microbiol. 2007 Mar; 73(6): 1712-20. [DOI:10.1128/AEM.02218-06] [PMID] []
17. Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J clinl periodontal. 1995 Jan;22(1):1-14. [DOI:10.1111/j.1600-051X.1995.tb01765.x] [PMID]
18. Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Dari-us PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J clini periodontal. 1990 Mar;17(3): 138-44. [DOI:10.1111/j.1600-051X.1990.tb01077.x] [PMID]
19. Uysal T, Amasyali M, Koyuturk AE, Sagdic D. Efficiency of amorphous calcium phosphate-containing orthodontic composite and resin modified glass ionomer on demineralization evaluated by a new laser fluorescence device. Eur J Dent. 2009 Apr;3(2):127-34. [DOI:10.1055/s-0039-1697419] [PMID] []
20. Tavassoli-Hojjati S, Atai M, Haghgoo R, Rahimian-Imam S, Kameli S, Ahmaian-Babaki F, Hamzeh F, Ahmadyar M. Compari-son of various concentrations of tricalcium phosphate nanoparticles on mechanical properties and remineralization of fissure sealants. J Dent (Tehran). 2014 Jul;11(4):379-88.
21. AlRefeai MH, AlHamdan EM, Al-Saleh S, Alqahtani AS, Al-Rifaiy MQ, Alshiddi IF, et al. Application of β-Tricalcium Phos-phate in Adhesive Dentin Bonding. Polymers (Basel). 2021 Aug 25;13(17):2855. [DOI:10.3390/polym13172855] [PMID] []
22. Al-Qahtani AS, Tulbah HI, Binhasan M, Shabib S, Al-Aali KA, Alhamdan MM, Abduljabbar T. Influence of Concentration Levels of β-Tricalcium Phosphate on the Physical Properties of a Dental Adhesive. Nanomaterials (Basel). 2022 Mar 3;12(5):853. [DOI:10.3390/nano12050853] [PMID] []
23. Salma K, Berzina-Cimdina L, Borodajenko N. Calcium phos-phate bioceramics prepared from wet chemically precipitated powders. Processing and Application of Ceramics. 2010;4(1):45-51. [DOI:10.2298/PAC1001045S]
24. Vecstaudza J, Locs J. Novel preparation route of stable amorphous calcium phosphate nanoparticles with high specific surface area. J Alloys Compd. 2017;700:215-22. [DOI:10.1016/j.jallcom.2017.01.038]
25. Amiri O, Salavati-Niasari M, Bagheri S, Yousefi AT. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP). Sci Rep. 2016;6:25227. [DOI:10.1038/srep25227] [PMID] []
26. Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins in-corporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014 May;39(2):109-14. [DOI:10.5395/rde.2014.39.2.109] [PMID] []
27. Lim BS, Lee SJ, Lee JW, Ahn SJ. Quantitative analysis of adhe-sion of cariogenic streptococci to orthodontic raw materials. Am J Orthod Dentofacial Orthop. 2008;133(6): 882-8. [DOI:10.1016/j.ajodo.2006.07.027] [PMID]
28. Eltayeb MK, Ibrahim YE, El Karim IA, Sanhouri NM. Distribution of white spot lesions among orthodontic patients attending teaching institutes in Khartoum. BMC Oral Health. 2017 May 25;17(1):88. [DOI:10.1186/s12903-017-0380-7] [PMID] []
29. Sagarika N, Suchindran S, Loganathan S, Gopikrishna V. Prevalence of white spot lesion in a section of Indian population undergoing fixed orthodontic treatment: An in vivo assessment using the visual International Caries Detection and Assessment System II criteria. J Conserv Dent. 2012 Apr;15(2):104-8. [DOI:10.4103/0972-0707.94572] [PMID] []
30. Shungin D, Olsson AI, Persson M. Orthodontic treatment-related white spot lesions: a 14-year prospective quantitative follow-up, including bonding material assessment. Am J Orthod Dentofacial Orthop.2010 Aug; 138(2):136.e1-8; discussion -7. [DOI:10.1016/j.ajodo.2009.05.020] [PMID]
31. Nomura R, Otsugu M, Naka S, Teramoto N, Kojima A, Mura-naka Y, Matsumoto-Nakano M, Ooshima T, Nakano K. Contribu-tion of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endo-carditis. Infect Immun. 2014 Dec;82(12):5223-34. [DOI:10.1128/IAI.02164-14] [PMID] []
32. Plonka KA, Pukallus ML, Barnett AG, Walsh LJ, Holcombe TH, Seow WK. Mutans streptococci and lactobacilli colonization in predentate children from the neonatal period to seven months of age. Caries Res. 2012;46(3):213-20. [DOI:10.1159/000337353] [PMID]
33. Chow CK, Wu CD, Evans CA. In vitro properties of orthodontic adhesives with fluoride or amorphous calcium phosphate. Int J Dent. 2011;2011:583521. [DOI:10.1155/2011/583521] [PMID] []
34. Espinosa-Cristóbal LF, López-Ruiz N, Cabada-Tarín D, Reyes-López SY, Zaragoza-Contreras A, Constandse-Cortéz D, et al. Antiadherence and Antimicrobial Properties of Silver Nano-particles against Streptococcus mutans on Brackets and Wires Used for Orthodontic Treatments. Journal of Nanomaterials. 2018;2018:9248527. [DOI:10.1155/2018/9248527]
35. Uysal T, Amasyali M, Koyuturk AE, Ozcan S, Sagdic D. Amor-phous calcium phosphate-containing orthodontic composites. Do they prevent demineralisation around orthodontic brackets? Aust Orthod J. 2010 May;26(1):10-5.
36. Li F, Wang P, Weir MD, Fouad AF, Xu HH. Evaluation of anti-bacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater. 2014 Jun;10(6):2804-13. [DOI:10.1016/j.actbio.2014.02.033] [PMID] []
37. Moreau JL, Sun L, Chow LC, Xu HH. Mechanical and acid neu-tralizing properties and bacteria inhibition of amorphous calci-um phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater 2011;98(1):80-8. [DOI:10.1002/jbm.b.31834] [PMID] []
38. Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011 Aug;27(8):762-9. [DOI:10.1016/j.dental.2011.03.016] [PMID] []
39. Alshammari FM, Sanea JA. Efficacy of Amorphous Calcium Phosphate (ACP) Containing Adhesive in Preventing Demineralization during Orthodontic Treatment, a Triple Blind-ed Randomized Clinical Trial (RCT). J Contemp Dent Pract. 2019;20(6):727-31. [DOI:10.5005/jp-journals-10024-2587] [PMID]
40. Behnan SM, Arruda AO, González-Cabezas C, Sohn W, Peters MC. In-vitro evaluation of various treatments to prevent demineralization next to orthodontic brackets. Am J Orthod Dentofacial Orthop. 2010 Dec;138(6):712.e1-7; [DOI:10.1016/j.ajodo.2010.05.014] [PMID]
41. Lee SJ, Heo M, Lee D, Han S, Moon JH, Lim HN, et al. Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles. Appl Surf Sci. 2018;432:317-23. [DOI:10.1016/j.apsusc.2017.04.030]
42. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The Antibacterial Mechanism of Silver Nanoparticles and Its Appli-cation in Dentistry. Int J Nanomedicine. 2020;15:2555-62. [DOI:10.2147/IJN.S246764] [PMID] []
43. Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int J Nanomedicine. 2020 May 6;15:3181-91. [DOI:10.2147/IJN.S253833] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Dental and Maxillofacial Sciences

Designed & Developed by: Yektaweb