Volume 5, Issue 3 (8-2020)                   J Res Dent Maxillofac Sci 2020, 5(3): 15-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naser mostofy S, Zarbakhsh A, Alaei M, Bitaraf T. Evaluation of the Effect of Zirconia and Titanium Abutments on Microleakage of Implant-Abutment Interface Under Oblique Cyclic Loading In Vitro. J Res Dent Maxillofac Sci 2020; 5 (3) :15-20
URL: http://jrdms.dentaliau.ac.ir/article-1-279-en.html
1- Assistant professor, Prosthodontics Dept, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Assistant professor, Prosthodontics Dept, Dental Faculty, Tehran Medical Sciences
3- Postgraduate student, Prosthodontics Dept, Dental Faculty, Tehran Medical Sciences
4- Assistant professor, Dental Implant Research Center, Dental Faculty, Tehran Medical Sciences , taherehbitaraf@yahoo.com
Abstract:   (2591 Views)
Background and Aim: Oral bacteria can proliferate in the implant-abutment interface (IAI) and cause inflammation in the peri-implant tissues and adjacent bone. This study aimed to assess the effect of zirconia and titanium abutments on the microleakage of the IAI under oblique cyclic loading conditions.
Materials and Methods: In this in-vitro study, 12 implant-abutment assemblies with zirconia and titanium abutments, in two groups of six, were vertically mounted inside resin blocks modified with autopolymerizing polyester base. The specimens were subjected to 75N oblique cyclic loading at an angle of 30±2° to the longitudinal axis of the implant at a frequency of 1 Hz at 500,000 cycles, which is equivalent to 20 months of human masticatory force. Fuchsine solution was used to evaluate the microleakage. To examine the penetration of fuchsine into the IAI, the fixtures were cut from the middle using a cutting machine. Then, the amount of fuchsine penetration in each of the samples was measured with a stereomicroscope at ×75 magnification at three points in each semicircle (cut implant), and the average of these six points was recorded as microleakage (µm). T-test was used to compare the microleakage after load with the significance level set at 0.05.
Results: The microleakage ​​rate after cyclic loading was 66.08±11.66 µm in zirconia abutments and 39.17±10.65 µm in titanium abutments, which was significantly higher with zirconia abutments (P=0.002).
Conclusion: Microleakage after oblique cyclic loading varies depending on the type of abutment. Titanium abutments showed significantly less microleakage than zirconia abutments.
Full-Text [PDF 338 kb]   (1326 Downloads) |   |   Full-Text (HTML)  (912 Views)  
Type of Study: Original article | Subject: Dental implant

References
1. Nascimento C, Ikeda LN, Pita MS, Pedroso e Silva RC, Pedrazzi V, Albuquerque RF, et al. Marginal fit and microbial leakage along the implant-abutment interface of fixed partial prostheses: An in vitro analysis using Checkerboard DNA-DNA hybridization. J Prosthet Dent. 2015;114(6):831-8. [DOI:10.1016/j.prosdent.2015.05.009] [PMID]
2. Koutouzis T, Gadalla H, Lundgren T. Bacterial Colonization of the Implant-Abutment Interface (IAI) of Dental Implants with a Sloped Marginal Design: An in-vitro Study. Clin Implant Dent Relat Res. 2016;18(1):161-7. [DOI:10.1111/cid.12287] [PMID]
3. Berberi A, Tehini G, Rifai K, Bou Nasser Eddine F, El Zein N, Badran B, et al. In vitro evaluation of leakage at implant-abutment connection of three implant systems having the same prosthetic interface using rhodamine B. Int J Dent. 2014;2014:351263. [DOI:10.1155/2014/351263] [PMID] [PMCID]
4. do Nascimento C, Miani PK, Pedrazzi V, Goncalves RB, Ribeiro RF, Faria AC, et al. Leakage of saliva through the implant-abutment interface: in vitro evaluation of three different implant connections under unloaded and loaded conditions. Int J Oral Maxillofac Implants. 2012;27(3):551-60.
5. Aloise JP, Curcio R, Laporta MZ, Rossi L, da Silva AM, Rapoport A. Microbial leakage through the implant-abutment interface of Morse taper implants in vitro. Clin Oral Implants Res. 2010;21(3):328-35. [DOI:10.1111/j.1600-0501.2009.01837.x] [PMID]
6. D'Ercole S, Tripodi D, Ravera L, Perrotti V, Piattelli A, Iezzi G. Bacterial leakage in Morse Cone internal connection implants using different torque values: an in vitro study. Implant Dent. 2014;23(2):175-9. [DOI:10.1097/ID.0000000000000044] [PMID]
7. Assenza B, Tripodi D, Scarano A, Perrotti V, Piattelli A, Iezzi G, et al. Bacterial leakage in implants with different implant-abutment connections: an in vitro study. J Periodontol. 2012;83(4):491-7. [DOI:10.1902/jop.2011.110320] [PMID]
8. Tallarico M, Fiorellini J, Nakajima Y, Omori Y, Takahisa I, Canullo L. Mechanical Outcomes, Microleakage, and Marginal Accuracy at the Implant-Abutment Interface of Original versus Nonoriginal Implant Abutments: A Systematic Review of In Vitro Studies. BioMed Res Int. 2018;2018:2958982. [DOI:10.1155/2018/2958982] [PMID] [PMCID]
9. D'Ercole S, Scarano A, Perrotti V, Mulatinho J, Piattelli A, Iezzi G, et al. Implants with internal hexagon and conical implant-abutment connections: an in vitro study of the bacterial contamination. J Oral Implantol. 2014;40(1):30-6. [DOI:10.1563/AAID-JOI-D-11-00121] [PMID]
10. Al-Jadaa A, Attin T, Peltomaki T, Schmidlin PR. Comparison of three in vitro implant leakage testing methods. Clin Oral Implants Res. 2015;26(4):e1-e7.
11. Zipprich H, Miatke S, Hmaidouch R, Lauer HC. A New Experimental Design for Bacterial Microleakage Investigation at the Implant-Abutment Interface: An In Vitro Study. Int J Oral Maxillofac Implants. 2016;31(1):37-44. [DOI:10.11607/jomi.3713] [PMID]
12. Khorshidi H, Raoofi S, Moattari A, Bagheri A, Kalantari MH. In Vitro Evaluation of Bacterial Leakage at Implant-Abutment Connection: An 11-Degree Morse Taper Compared to a Butt Joint Connection. Int J Biomater. 2016;2016:8527849. [DOI:10.1155/2016/8527849] [PMID] [PMCID]
13. Passos SP, Gressler May L, Faria R, Ozcan M, Bottino MA. Implant-abutment gap versus microbial colonization: Clinical significance based on a literature review. J Biomed Mater Res B Appl Biomater. 2013;101(7):1321-8. [DOI:10.1002/jbm.b.32945] [PMID]
14. Tripodi D, D'Ercole S, Iaculli F, Piattelli A, Perrotti V, Iezzi G. Degree of bacterial microleakage at the implant-abutment junction in Cone Morse tapered implants under loaded and unloaded conditions. J Appl Biomater Funct Mater. 2015;13(4):e367-71. [DOI:10.5301/jabfm.5000247] [PMID]
15. Larrucea C, Conrado A, Olivares D, Padilla C, Barrera A, Lobos O. Bacterial microleakage at the abutment-implant interface, in vitro study. Clin Implant Dent Relat Res. 2018;20(3):360-7. [DOI:10.1111/cid.12589] [PMID]
16. Alves DC, Carvalho PS, Martinez EF. In vitro microbiological analysis of bacterial seal at the implant-abutment interface using two morse taper implant models. Braz Dent J. 2014;25(1):48-53. [DOI:10.1590/0103-6440201302178] [PMID]
17. Rismanchian M, Hatami M, Badrian H, Khalighinejad N, Goroohi H. Evaluation of microgap size and microbial leakage in the connection area of 4 abutments with Straumann (ITI) implant. J Oral Implantol. 2012;38(6):677-85. [DOI:10.1563/AAID-JOI-D-11-00167] [PMID]
18. Gherlone EF, Cappare P, Pasciuta R, Grusovin MG, Mancini N, Burioni R. Evaluation of resistance against bacterial microleakage of a new conical implant-abutment connection versus conventional connections: an in vitro study. New Microbiol. 2016;39(1):49-56.
19. Cardoso M, Sangalli J, Koga-Ito CY, Ferreira LL, da Silva Sobrinho AS, Nogueira L, Jr. Abutment Coating With Diamond-Like Carbon Films to Reduce Implant-Abutment Bacterial Leakage. J Periodontol. 2016;87(2):168-74. [DOI:10.1902/jop.2015.150362] [PMID]
20. Lemos CAA, Verri FR, Bonfante EA, Santiago Júnior JF, Pellizzer EP. Comparison of external and internal implant-abutment connections for implant supported prostheses. A systematic review and meta-analysis. J Dent. 2018;70:14-22. [DOI:10.1016/j.jdent.2017.12.001] [PMID]
21. Leonhardt Å, Renvert S, Dahlén G. Microbial findings at failing implants. Clin Oral Implants Res. 1999;10(5):339-45. [DOI:10.1034/j.1600-0501.1999.100501.x] [PMID]
22. Dias ECLCM, Silva-Olívio IRT, Coppedé A, Groisman M. Assessment of Bacterial Leakage at the Implant-Abutment Interface of Internal and External Connection Implants: An In Vitro Study. Dent Health Curr Res. 2016;2:2. doi:10.4172/2470-0886.1000115. [DOI:10.4172/2470-0886.1000115]
23. Smith NA, Turkyilmaz I. Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values. J Prosthet Dent. 2014;112(3):561-7. [DOI:10.1016/j.prosdent.2013.11.010] [PMID]
24. Peruzetto WM, Martinez EF, Peruzzo DC, Joly JC, Napimoga MH. Microbiological Seal of Two Types of Tapered Implant Connections. Braz Dent J. 2016;27(3):273-7. [DOI:10.1590/0103-6440201600604] [PMID]
25. Pimentel AC, Manzi MR, Sartori SG, da Graca Naclerio-Homem M, Sendyk WR. In vivo effectiveness of silicone gel sheets as barriers at the inner microgap between a prosthetic abutment and an external-hexagon implant platform. Int J Oral Maxillofac Implants. 2014;29(1):121-6. [DOI:10.11607/jomi.3177] [PMID]
26. Alikhasi M, Monzavi A, Bassir SH, Naini RB, Khosronedjad N, Keshavarz S. A comparison of precision of fit, rotational freedom, and torque loss with copy-milled zirconia and prefabricated titanium abutments. Int J Oral Maxillofac Implants. 2013;28(4):996-1002. [DOI:10.11607/jomi.2937] [PMID]
27. Butignon LE, Basilio Mde A, Pereira Rde P, Arioli Filho JN. Influence of three types of abutments on preload values before and after cyclic loading with structural analysis by scanning electron microscopy. Int J Oral Maxillofac Implants. 2013;28(3):e161-70. [DOI:10.11607/jomi.2481] [PMID]
28. Gehrke SA, Poncio da Silva PM, Calvo Guirado JL, Delgado-Ruiz RA, Dedavid BA, Aline Nagasawa M, et al. Mechanical behavior of zirconia and titanium abutments before and after cyclic load application. J Prosthet Dent. 2016;116(4):529-35. [DOI:10.1016/j.prosdent.2016.02.015] [PMID]
29. Mishra SK, Chowdhary R, Kumari S. Microleakage at the Different Implant Abutment Interface: A Systematic Review. J Clin Diagn Res. 2017;11(6):ZE10-ZE5. [DOI:10.7860/JCDR/2017/28951.10054] [PMID] [PMCID]
30. Chang B, Goldstein R, Lin CP, Byreddy S, Lawson NC. Microleakage around zirconia crown margins after ultrasonic scaling with self-adhesive resin or resin modified glass ionomer cement. J Esthet Restor Dent. 2018;30(1):73-80. [DOI:10.1111/jerd.12348] [PMID] [PMCID]
31. Abdelhamed MI, Galley JD, Bailey MT, Johnston WM, Holloway J, McGlumphy E, et al. A Comparison of Zirconia and Titanium Abutments for Microleakage. Clin Implant Dent Relat Res. 2015;17 Suppl 2:e643-51. [DOI:10.1111/cid.12301] [PMID]
32. Black DL, Turkyilmaz I, Lien W, Chong CH. Evaluation of the Sealing Capability of the Internal Conical Connections of Implants with Titanium and Zirconia Abutments. J Contemp Dent Pract. 2017;18(10):915-22. [DOI:10.5005/jp-journals-10024-2149] [PMID]
33. Hsu YT, Mason SA, Wang HL. Biological implant complications and their management. J Int Acad Periodontol. 2014;16(1):9-18.
34. Yuzugullu B, Avci M. The implant-abutment interface of alumina and zirconia abutments. Clin Implant Dent Relat Res. 2008;10(2):113-21. [DOI:10.1111/j.1708-8208.2007.00071.x] [PMID]
35. Koutouzis T, Mesia R, Calderon N, Wong F, Wallet S. The effect of dynamic loading on bacterial colonization of the dental implant fixture-abutment interface: an in vitro study. J Oral Implantol. 2014 Aug;40(4):432-7. [DOI:10.1563/AAID-JOI-D-11-00207] [PMID]
36. Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol. 2001;72(10):1372-83. [DOI:10.1902/jop.2001.72.10.1372] [PMID]
37. Harder S, Quabius ES, Ossenkop L, Kern M. Assessment of lipopolysaccharide microleakage at conical implant-abutment connections. Clin Oral Investig. 2012;16(5):1377-84. [DOI:10.1007/s00784-011-0646-4] [PMID]
38. Mishra SK, Chowdhary R, Kumari S. Microleakage at the Different Implant Abutment Interface: A Systematic Review. J Clin Diagn Res. 2017;11(6):ZE10-ZE5. [DOI:10.7860/JCDR/2017/28951.10054] [PMID] [PMCID]
39. Baggi L, Di Girolamo M, Mirisola C, Calcaterra R. Microbiological evaluation of bacterial and mycotic seal in implant systems with different implant-abutment interfaces and closing torque values. Implant Dent. 2013;22(4):344-50. [DOI:10.1097/ID.0b013e3182943062] [PMID]
40. Martin-Gili D, Molmeneu M, Fernandez M, Punset M, Giner L, Armengou J, et al. Determination of fluid leakages in the different screw-retained implant-abutment connections in a mechanical artificial mouth. J Mater Sci Mater Med. 2015;26(7):211. [DOI:10.1007/s10856-015-5544-x] [PMID]
41. Cavusoglu Y, Akca K, Gurbuz R, Cehreli MC. A pilot study of joint stability at the zirconium or titanium abutment/titanium implant interface. Int J Oral Maxillofac Implants. 2014;29(2):338-43. [DOI:10.11607/jomi.3116] [PMID]
42. Nakamura K, Kanno T, Milleding P, Ortengren U. Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont. 2010;23(4):299-309.
43. Naser mostofy S, Jalalian E, Valaie N, Mohtashamrad Z, Haeri A, Bitaraf T. Study of the Effect of GapSeal on Microgap and Microleakage in Internal Hex Connection After Cyclic Loading. J Res Dentomaxillofac Sci. 2019; 4 (3) :36-42. [DOI:10.29252/jrdms.4.3.36---]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Dental and Maxillofacial Sciences

Designed & Developed by: Yektaweb