logo
Volume 10, Issue 4 (12-2025)                   J Res Dent Maxillofac Sci 2025, 10(4): 292-298 | Back to browse issues page

Ethics code: SRB/SDC-Perio/0167/2024

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chakraborty P, Gurumoorthy K, Suresh N. Preparation and Characterization of Europium-Doped Bioglass for Bone Regeneration: An In Vitro Study. J Res Dent Maxillofac Sci 2025; 10 (4) :292-298
URL: http://jrdms.dentaliau.ac.ir/article-1-970-en.html
1- Department of Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
Abstract:   (162 Views)
Background and Aim: Europium (Eu) is the most reactive and volatile rare-earth element. This study aimed to develop Eu-doped bioglass for applications in bone regeneration.   
Materials and Methods: To synthesize Eu-doped bioglass, 1.3 g of cetyltrimethylammonium bromide was dissolved in 40 mL of ethanol to form a homogeneous surfactant solution. Europium nitrate, tetraethyl orthosilicate, calcium nitrate, and orthophosphoric acid were then sequentially added under continuous stirring. The mixture was stirred for 24 hours at room temperature to allow complete reaction and precursor integration. Next, 50 mL of acetone was added to induce precipitation, followed by centrifugation at 12,000 rpm for 6 minutes. The supernatant was discarded, and the collected precipitate was sintered to obtain the final bioglass. The fabricated Eu-doped bioglass was subsequently characterized using scanning electron microscopy (SEM), attenuated total reflectance–infrared spectroscopy (ATR-IR), and antimicrobial analysis to evaluate its morphological, structural, and biological properties.   
Results: The ATR-IR spectra revealed typical silicate bands, and SEM images displayed a hollow-shaped structure. The superior crystallinity of Eu contributed to the bioglass network’s enhanced mechanical properties. Antimicrobial evaluation revealed a notable reduction in the number of colonies for both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).
Conclusion: The synthesized Eu-doped bioglass exhibited notable antimicrobial activity and favorable characteristics for bone tissue engineering. Incorporation of Eu ions into the bioglass matrix enhanced biological performance, suggesting its potential applicability in bone regeneration. These findings indicate that Eu-doped bioglass could serve as a promising material for biomedical applications, particularly for promoting bone healing.
 
Full-Text [PDF 453 kb]   (97 Downloads) |   |   Full-Text (HTML)  (53 Views)  
Type of Study: Original article | Subject: Periodontology

References
1. Zhang Y, Hu M, Wang X, Zhou Z, Liu Y. Design and Evaluation of Europium Containing Mesoporous Bioactive Glass Nanospheres: Doxorubicin Release Kinetics and Inhibitory Effect on Osteosarcoma MG 63 Cells. Nanomaterials (Basel). 2018 Nov 21;8(11):961. [DOI:10.3390/nano8110961] [PMID] []
2. Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 2011 Dec;32(34):9031-9. [DOI:10.1016/j.biomaterials.2011.08.032] [PMID]
3. Hou X, Zhang L, Zhou Z, Luo X, Wang T, Zhao X, et al, Chen F, Zheng L. Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater. 2022 Oct 14;13(4):187. [DOI:10.3390/jfb13040187] [PMID] []
4. Meskher H, Sharifianjazi F, Tavamaishvili K, Irandoost M, Nejadkoorki D, Makvandi P. Limitations, challenges and prospective solutions for bioactive glasses-based nanocomposites for dental applications: A critical review. J Dent. 2024 Nov;150:105331. [DOI:10.1016/j.jdent.2024.105331] [PMID]
5. Wu L, Yang F, Xue Y, Gu R, Liu H, Xia D, et al. The biological functions of europium-containing biomaterials: A systematic review. Mater Today Bio. 2023 Feb 24;19:100595. [DOI:10.1016/j.mtbio.2023.100595] [PMID] []
6. Shi M, Xia L, Chen Z, Lv F, Zhu H, Wei F, et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials. 2017 Nov;144:176-87. [DOI:10.1016/j.biomaterials.2017.08.027] [PMID]
7. Cui Y, Hong S, Jiang W, Li X, Zhou X, He X, et al. Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications. Bioact Mater. 2024 Jan 12;34:436-62. [DOI:10.1016/j.bioactmat.2024.01.001] [PMID] []
8. Wu C, Xia L, Han P, Mao L, Wang J, Zhai D, et al. Europium-Containing Mesoporous Bioactive Glass Scaffolds for Stimulating in Vitro and in Vivo Osteogenesis. ACS Appl Mater Interfaces. 2016 May 11;8(18):11342-54. [DOI:10.1021/acsami.6b03100] [PMID]
9. Hussein L, Moaness M, Mabrouk M, Farahat MG, Beherei HH. Advancements in mesoporous bioactive glasses for effective bone cancer therapy: Recent developments and future perspectives. Biomater Biosyst. 2025 Feb 15;17:100108. [DOI:10.1016/j.bbiosy.2025.100108] [PMID] []
10. Chitra S, Bargavi P, Balasubramaniam M, Chandran RR, Balakumar S. Impact of copper on in-vitro biomineralization, drug release efficacy and antimicrobial properties of bioactive glasses. Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110598. [DOI:10.1016/j.msec.2019.110598] [PMID]
11. Iconaru SL, Groza A, Gaiaschi S, Rokosz K, Raaen S, Ciobanu SC, Chapon P, Predoi D. Antimicrobial properties of samarium doped hydroxyapatite suspensions and coatings. Coatings. 2020 Nov 20;10(11):1124. [DOI:10.3390/coatings10111124]
12. Iconaru SL, Predoi D, Ciobanu CS, Negrila CC, Trusca R, Raaen S, Rokosz K, Ghegoiu L, Badea ML, Cimpeanu C. Novel Antimicrobial Agents Based on Zinc-Doped Hydroxyapatite Loaded with Tetracycline. Antibiotics (Basel). 2024 Aug 25;13(9):803. [DOI:10.3390/antibiotics13090803] [PMID] []
13. Yu F, Lian R, Liu L, Liu T, Bi C, Hong Ket al. Biomimetic Hydroxyapatite Nanorods Promote Bone Regeneration via Accelerating Osteogenesis of BMSCs through T Cell-Derived IL-22. ACS Nano. 2022 Jan 25;16(1):755-70. [DOI:10.1021/acsnano.1c08281] [PMID]
14. Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS. TGF-β/BMP signaling pathway is involved in cerium-promoted osteogenic differentiation of mesenchymal stem cells. J Cell Biochem. 2013 May;114(5):1105-14. [DOI:10.1002/jcb.24451] [PMID]
15. Marycz K, Smieszek A, Targonska S, Walsh SA, Szustakiewicz K, Wiglusz RJ. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics. Mater Sci Eng C Mater Biol Appl. 2020 May;110:110634. [DOI:10.1016/j.msec.2020.110634] [PMID]
16. Velraj MS, Suresh N, Kaarthikeyan G, Shivalingam C. In vitro study on the synthesis and characterization of erbium-doped hydroxyapatite/bioglass-polyvinyl alcohol scaffold for periodontal bone regeneration. J Pharm Bioallied Sci. 2025;21(2):239-49. [DOI:10.58240/1829006X-2025.2-239]
17. Sergi R, Bellucci D, Cannillo V. A comprehensive review of bioactive glass coatings: State of the art, challenges and future perspectives. Coatings. 2020 Aug 3;10(8):757. [DOI:10.3390/coatings10080757]
18. Abushahba F, Algahawi A, Areid N, Hupa L, Närhi TO. Bioactive glasses in periodontal regeneration: a systematic review. Tissue Eng. Part C Methods. 2023 May 1;29(5):183-96. [DOI:10.1089/ten.tec.2023.0036] [PMID]
19. Li F, Wang M, Pi G, Lei B. Europium Doped Monodispersed Bioactive Glass Nanoparticles Regulate the Osteogenic Differentiation of Human Marrow Mesenchymal Stem Cells. J Biomed Nanotechnol. 2018 Apr 1;14(4):756-64. [DOI:10.1166/jbn.2018.2504] [PMID]
20. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013 Jan;34(2):422-33. [DOI:10.1016/j.biomaterials.2012.09.066] [PMID]
21. Suresh N, Kaarthikeyan G. Green Synthesis and the Evaluation of Osteogenic Potential of Novel Europium-Doped-Monetite Calcium Phosphate by Cissus quadrangularis. Cureus. 2024 Apr 28;16(4):e59202. [DOI:10.7759/cureus.59202]
22. Reddy SB, Arumugam P, Kishore OG, K S. Development, Characterization, and Antibacterial Analysis of the Selenium-Doped Bio-Glass-Collagen-Gelatin Composite Scaffold for Guided Bone Regeneration. Cureus. 2023 Nov 15;15(11):e48838. [DOI:10.7759/cureus.48838]
23. Shih KY, Yu SC. Microwave-Assisted Rapid Synthesis of Eu(OH)3/RGO Nanocomposites and Enhancement of Their Antibacterial Activity against Escherichia coli. Materials (Basel). 2021 Dec 22;15(1):43. [DOI:10.3390/ma15010043] [PMID] []
24. Çinar Avar E, Türkmen KE, Erdal E, Loğoğlu E, Katircioğlu H. Biological Activities and Biocompatibility Properties of Eu(OH)3 and Tb(OH)3 Nanorods: Evaluation for Wound Healing Applications. Biol Trace Elem Res. 2023 Apr;201(4):2058-2070. [DOI:10.1007/s12011-022-03264-w] [PMID]
25. Zheng K, Balasubramanian P, Paterson TE, Stein R, MacNeil S, Fiorilli S, et al. Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109764. [DOI:10.1016/j.msec.2019.109764] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.