Volume 10, Issue 1 (3-2025)                   J Res Dent Maxillofac Sci 2025, 10(1): 40-50 | Back to browse issues page

Ethics code: NA
Clinical trials code: NA


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golla V P, Mantena S R, Alla R K, Guduri V, Sajjan MC S, D B R et al . Mechanical Properties of Denture Base Materials Modified with Zirconia Nanotubes. J Res Dent Maxillofac Sci 2025; 10 (1) :40-50
URL: http://jrdms.dentaliau.ac.ir/article-1-642-en.html
1- Department of Prosthodontics, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India
2- Department of Dental Materials, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India , ramakrishna.a@vdc.edu.in
Abstract:   (123 Views)
Background and Aim: Several studies have investigated the effect of addition of fillers on mechanical strength of denture base materials. This study aimed to evaluate the mechanical properties of heat-cure denture base materials incorporated with different concentrations of zirconia nanotubes (ZNTs).
Materials and Methods: In this in vitro study, 90 specimens were fabricated from each denture base resin material (Trevlon and DPI) and divided into three groups (n=30) based on the mechanical properties to be tested (flexural strength, impact strength, and surface hardness). Thirty specimens in each group were further subdivided into 5 subgroups (n=6) based on the weight percentage (wt%) of ZNTs (0.0wt%, 0.5wt%, 1.0wt%, 2.0wt%, and 5.0wt%). The specimens were subjected to flexural strength, impact strength, and surface hardness testing using a universal testing machine, IZOD impact testing machine, and Vickers hardness tester, respectively. One-way ANOVA and post-hoc tests were used for statistical analyses (alpha=0.05). 
Results: The maximum flexural strength was observed following the inclusion of 2.0wt% and 1.0wt% ZNTs in Trevlon and DPI, respectively. The maximum impact strength was obtained with the addition of 1.0wt% ZNTs to both Trevlon and DPI. The surface hardness of Trevlon and DPI increased significantly with an increase in the concentration of ZNTs (P=0.005). Flexural strength (P=0.000) and surface hardness (P=0.005) were significantly different among various concentrations of Trevlon and DPI, but the impact strength (P=0.013) was significantly different only in DPI.
Conclusion: The optimal concentration of ZNTs to obtain enhanced mechanical properties of denture base resins was found to be 1.0wt%.
 
Full-Text [PDF 545 kb]   (71 Downloads) |   |   Full-Text (HTML)  (25 Views)  
Type of Study: Original article | Subject: Prosthodontics

References
1. Alla RK, Suresh Sajjan S, Ramaraju Alluri V, Ginjupalli K, Upadhya NP. Influence of fiber reinforcement on the properties of denture base resins. J Biomater Nanobiotech. 2013;4(1): 91-7. [DOI:10.4236/jbnb.2013.41012]
2. Nejatian T, Johnson A, Van Noort R. Reinforcement of denture base resin. Adv Sci Technol. 2006;49:124-9. [DOI:10.4028/www.scientific.net/AST.49.124]
3. Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine. 2016 Oct 27;11:5633-43. [DOI:10.2147/IJN.S120054] [PMID] []
4. Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine. 2018 Jan 9;13:283-92. [DOI:10.2147/IJN.S152571] [PMID] []
5. Rana MH, Shaik S, Hameed MS, Al-Saleh S, AlHamdan EM, Alshahrani A, Alqahtani A, Albaqawi AH, Vohra F, Abduljabbar T. Influence of Dental Glass Fibers and Orthopedic Mesh on the Failure Loads of Polymethyl Methacrylate Denture Base Resin. Polymers (Basel). 2021 Aug 20;13(16):2793. [DOI:10.3390/polym13162793] [PMID] []
6. Alla RK, Swamy KN, Vyas R, Tiruveedula NB, Raju AM. Physical and mechanical properties of heat activated acrylic denture base resin materials. Res J Pharm Technol. 2018;11(6):2258-62. [DOI:10.5958/0974-360X.2018.00418.3]
7. Alla RK, Guduri V, Tiruveedula NBP, Narasimha Rao G, Swamy KNR, Vyas R. Effect of silver nanoparticles incorporation on microhardness of Heat-cure denture base resins. Int J Dent Mater. 2020;2(4):103-10. [DOI:10.37983/IJDM.2020.2401]
8. Ghahremani L, Shirkavand S, Akbari F, Sabzikari N. Tensile strength and impact strength of color modified acrylic resin reinforced with titanium dioxide nanoparticles. J Clin Exp Dent. 2017 May 1;9(5):e661-e665. [DOI:10.4317/jced.53620] [PMID] []
9. Naik A. Complete denture fractures: A clinical study. J Ind Prosthodont Soc. 2009;9(3):148. [DOI:10.4103/0972-4052.57084]
10. Leão RS, Moraes SLD, Gomes JML, Lemos CAA, Casado BGDS, Vasconcelos BCDE, Pellizzer EP. Influence of addition of zirconia on PMMA: A systematic review. Mater Sci Eng C Mater Biol Appl. 2020 Jan;106:110292. [DOI:10.1016/j.msec.2019.110292] [PMID]
11. Kawai N, Lin J, Youmaru H, Shinya A, Shinya A. Effects of three luting agents and cyclic impact loading on shear bond strengths to zirconia with tribochemical treatment. J Dent Sci. 2012;7(2):118-24. [DOI:10.1016/j.jds.2012.03.007]
12. Zidan S, Silikas N, Alhotan A, Haider J, Yates J. Investigating the Mechanical Properties of ZrO2-Impregnated PMMA Nanocomposite for Denture-Based Applications. Materials (Basel). 2019 Apr 25;12(8):1344. [DOI:10.3390/ma12081344] [PMID] []
13. Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS. A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J Dent Res. 2015;6(2):146-51. [DOI:10.1016/j.sjdr.2015.02.003]
14. Alhavaz A, Rezaei Dastjerdi M, Ghasemi A, Ghasemi A, Alizadeh Sahraei A. Effect of untreated zirconium oxide nanofiller on the flexural strength and surface hardness of autopolymerized interim fixed restoration resins. J Esthet Restor Dent. 2017 Jul 8;29(4):264-9. [DOI:10.1111/jerd.12300] [PMID]
15. Ergun G, Sahin Z, Ataol AS. The effects of adding various ratios of zirconium oxide nanoparticles to poly(methyl methacrylate) on physical and mechanical properties. J Oral Sci. 2018;60(2):304-15. [DOI:10.2334/josnusd.17-0206] [PMID]
16. Abdulrazzaq Naji S, Behroozibakhsh M, Jafarzadeh Kashi TS, Eslami H, Masaeli R, Mahgoli H, et al. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). J Adv Prosthodont. 2018 Apr;10(2): 113-21. [DOI:10.4047/jap.2018.10.2.113] [PMID] []
17. Nezhad EZ, Sarraf M, Musharavati F, Jaber F, Wang JI, Hosseini HR, et al. Effect of zirconia nanotube coating on the hydrophilicity and mechanochemical behavior of zirconium for biomedical applications. Surf Interfaces. 2022;28:101623. [DOI:10.1016/j.surfin.2021.101623]
18. Bhattacharya SR, Ray PK, Makhal M, Sen SK. Incidence and causes of fracture of acrylic resin complete denture. J Evol Med Dent Sci. 2014;3(69):14787-94. [DOI:10.14260/jemds/2014/3986]
19. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH. Studies on the effects of titanate and silane coupling agents on the performance of poly (methyl methacrylate)/barium titanate denture base nanocomposites. J Dent. 2017 Jan;56:121-32. [DOI:10.1016/j.jdent.2016.11.012] [PMID]
20. Mahross HZ, Baroudi K. Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. Eur J Dent. 2015 Apr-Jun;9(2):207-12. [DOI:10.4103/1305-7456.156821] [PMID] []
21. Karci M, Demir N, Yazman S. Evaluation of Flexural Strength of Different Denture Base Materials Reinforced with Different Nanoparticles. J Prosthodont. 2019 Jun;28(5):572-9. [DOI:10.1111/jopr.12974] [PMID]
22. Indira K, Mudali UK, Nishimura T, Rajendran N. A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. J Bio- Tribo-Corros. 2015;1(4):1-22. [DOI:10.1007/s40735-015-0024-x]
23. Wang R, Kayacan R, Küçükeşmen C. Nanotubes/Polymethyl Methacrylate Composite Resins as Denture Base Materials. In: Zhang M, Naik RR, Dai L, editors. Carbon Nanomaterials for Biomedical Applications. Cham: Springer International Publishing; 2016. p. 227-40. [DOI:10.1007/978-3-319-22861-7_7] []
24. Wang R, Tao J, Yu B, Dai L. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent. 2014 Apr;111(4): 318-26. [DOI:10.1016/j.prosdent.2013.07.017] [PMID]
25. Abdallah RM. Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes. J Adv Prosthodont. 2016 Jun;8(3):167-71. [DOI:10.4047/jap.2016.8.3.167] [PMID] []
26. Ayad N, Badawi MF, Fatah AA. Effect of reinforcement of high-impact acrylic resin with zirconia on some physical and mechanical properties. Arch Oral Res. 2008; 4(3):145-51.
27. Khaled SM, Charpentier PA, Rizkalla AS. Synthesis and characterization of poly (methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes. Acta Biomater. 2010 Aug;6(8):3178-86. [DOI:10.1016/j.actbio.2010.02.024] [PMID]
28. Albasarah S, Al Abdulghani H, Alaseef N, Al-Qarni FD, Akhtar S, Khan SQ, Ateeq IS, Gad MM. Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness. J Adv Prosthodont. 2021 Aug;13(4):226-36. [DOI:10.4047/jap.2021.13.4.226] [PMID] []
29. Anusavice KJ, Shen C, Rawls HR. Phillips Science of Dental Materials. 11th Ed. Philadelphia: Elsevier; 2003.
30. Francis J, Shetty R, Shenoy K, Somaraj V. Comparative evaluation on the influence of different curing cycles on the mechanical properties of three commercially available denture base resins: An in-vitro study. J Appl Dent Med Sci. 2016;2(3):23-30.
31. Athar Z, Juszczyk AS, Radford DR, Clark RK. Effect of curing cycles on the mechanical properties of heat cured acrylic resins. Eur J Prosthodont Restor Dent. 2009 Jun;17(2):58-60.
32. Yu W, Wang X, Tang Q, Guo M, Zhao J. Reinforcement of denture base PMMA with ZrO(2) nanotubes. J Mech Behav Biomed Mater. 2014 Apr;32:192-7. [DOI:10.1016/j.jmbbm.2014.01.003] [PMID]
33. Al Badr RM. Effect of addition ZrO2 nanoparticles to dental composites on the physical and mechanical properties. Int J Sci Eng Res. 2018;9(6):1289-93. [DOI:10.14299/ijser.2018.06.02]
34. Ahmed MA, Ebrahim MI. Effect of zirconium oxide nano-fillers addition on the flexural strength fracture toughness, and hardness of heat-polymerized acrylic resin. World J Nano Sci Eng. 2014;4(2):50-7. [DOI:10.4236/wjnse.2014.42008]
35. Dhir G, Berzins DW, Dhuru VB, Periathamby AR, Dentino A. Physical properties of denture base resins potentially resistant to Candida adhesion. J Prosthodont. 2007 Nov-Dec;16(6): 465-72. [DOI:10.1111/j.1532-849X.2007.00219.x] [PMID] []
36. Ali M, Safi IN. Evaluation the effect of modified nano-fillers addition on some properties of heat cured acrylic denture base material. Journal of Baghdad College of Dentistry. 2011;23(3):23-9.
37. Kurakalva Soundarya DP, Narendra R, Reddy JS, Kumari SA. A Comparative Evaluation of Measuring Impact Strength of Heat Cure Acrylic Denture Base Resin With and Without Addition of Zirconia Nano-Particles-An In Vitro Study. Ann Rom Soc Cell Biol. 2021;25(3):5525-31.
38. Begum SS, Ajay R, Devaki V, Divya K, Balu K, Kumar PA. Impact Strength and Dimensional Accuracy of Heat-Cure Denture Base Resin Reinforced with ZrO2 Nanoparticles: An In Vitro Study. J Pharm Bioallied Sci. 2019 May;11(Suppl 2): S365-70. [DOI:10.4103/JPBS.JPBS_36_19] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Research in Dental and Maxillofacial Sciences

Designed & Developed by: Yektaweb