Volume 6, Issue 4 (Journal of Research in Dental & Maxillofacial Sciences Autumn 2021)                   J Res Dent Maxillofac Sci 2021, 6(4): 8-13 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaseminejad R, Azizi A, Fazlyab M, Toursavadkouhi S. Effect of Smear Layer on Penetration Depth of Methylene Blue and Curcumin into Root Dentinal Tubules. J Res Dent Maxillofac Sci. 2021; 6 (4) :8-13
URL: http://jrdms.dentaliau.ac.ir/article-1-345-en.html
1- Private Practice
2- Oral Medicine Dept, Faculty of Dentistry,Tehran Medical Sciences,
3- Endodontics Dept, Faculty of Dentistry, Tehran Medical Sciences
4- Endodontics Dept, Faculty of Dentistry, Tehran Medical Sciences,Islamic Azad University, Tehran, Iran , s_savadkouhi@yahoo.com
Abstract:   (373 Views)
Background and Aim: Methylene blue and curcumin are effective photosensitizers for inactivation of bacteria. This study assessed the penetration depth of methylene blue and curcumin in presence/absence of smear layer into dentinal tubules.
Materials and Methods: Thirty-two human central and lateral incisors were included in this experimental study. The initially prepared specimens were randomly allocated to 4 experimental groups: Group 1: methylene blue with smear layer, group 2: methylene blue without smear layer, group 3: curcumin with smear layer, group 4: curcumin without smear layer. Root specimens were sectioned by a diamond disc at 4 and 8 mm from the apex to obtain apical, middle, and coronal sections. The mean penetration depth was measured at the buccal, mesial, distal and palatal areas on cross sections. ANOVA was used to assess the effect of photosensitizer type, smear layer, and root level on penetration depth. Pairwise comparisons were performed by the Student’s t-test.
Results: The maximum penetration depth was in the apical third in group 2 (0.98±0.25 mm) and the minimum penetration depth was in the coronal third in group 1 (0.21±0.15 mm); this difference was significant (P=0.001). Smear layer removal from the apical and middle thirds was correlated with higher photosensitizer penetration depth (P=0.000) but this difference was not significant in the coronal third (P=0.6). Curcumin had significantly greater penetration depth in presence of smear layer in all three parts compared with methylene blue (P<0.05).
Conclusion: Curcumin can penetrate more into dentinal tubules than methylene blue in presence of smear layer.
Full-Text [PDF 311 kb]   (159 Downloads) |   |   Full-Text (HTML)  (116 Views)  
Type of Study: Original article | Subject: Oral medicine

1. Mohammadi Z, Jafarzadeh H, Shalavi S, Kinoshita J-I. Photodvnamic Therapy in Endodontics. J. Contemp. Dent. Pract The journal of contemporary dental practice. 2017;18(6):534-8. [DOI:10.5005/jp-journals-10024-2079] [PMID]
2. Plotino G, Grande N, Mercade M. Photodynamic therapy in endodontics. Int Endod J. 2019;52(6):760-74. [DOI:10.1111/iej.13057] [PMID]
3. Nogueira AC, Graciano AX, Nagata JY, Fujimake M, Terada RS, Bento AC, et al. Photosensitizer and light diffusion through dentin in photodynamic therapy. Journal of biomedical optics. 2013;18(5):055004. [DOI:10.1117/1.JBO.18.5.055004] [PMID]
4. Azizi A, Shohrati P, Goudarzi M, Lawaf S, Rahimi A. Comparison of the effect of photodynamic therapy with curcumin and methylene Blue on streptococcus mutans bacterial colonies. Photodiagnosis Photodyn Ther. 2019;27:203-9. [DOI:10.1016/j.pdpdt.2019.06.002] [PMID]
5. Daliri F, Azizi A, Goudarzi M, Lawaf S, Rahimi A. In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis Photodyn Ther. 2019;26:193-8. [DOI:10.1016/j.pdpdt.2019.03.017] [PMID]
6. Crivello JV, Bulut U. Curcumin: A naturally occurring long‐wavelength photosensitizer for diaryliodonium salts. J. Polym. Sci. A Polym. Chem . 2005;43(21):5217-31. [DOI:10.1002/pola.21017]
7. Da Frota MF, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Bagnato VS, Espir CG, Berbert FLCV. Photodynamic therapy in root canals contaminated with Enterococcus faecalis using curcumin as photosensitizer. Lasers Med Sci. 2015;30(7):1867-72. [DOI:10.1007/s10103-014-1696-z] [PMID]
8. Santezi C, Reina BD, Dovigo LN. Curcumin-mediated Photodynamic Therapy for the treatment of oral infections-A review. Photodiagnosis Photodyn Ther. 2018;21:409-15. [DOI:10.1016/j.pdpdt.2018.01.016] [PMID]
9. Sebrao CCN, Bezerra Jr AG, de França PHC, Ferreira LE, Westphalen VPD. Comparison of the efficiency of rose bengal and methylene blue as photosensitizers in photodynamic therapy techniques for Enterococcus faecalis inactivation. Photomed Laser Surg. 2017;35(1):18-23. [DOI:10.1089/pho.2015.3995] [PMID]
10. Karaoğlu GE, Erdönmez D, Göl C, Durmuş M. Efficacy of antimicrobial photodynamic therapy administered using methylene blue, toluidine blue and tetra 2-mercaptopyridine substituted zinc phthalocyanine in root canals contaminated with Enterococcusaecalis. Photodiagnosis Photodyn Ther. 2020;32:102038. [DOI:10.1016/j.pdpdt.2020.102038] [PMID]
11. George S, Kishen A. Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. Journal of Biomeddical Optics. 2007;12(3):034029. [DOI:10.1117/1.2745982] [PMID]
12. Al Shehadat S. Smear layer in endodontics: role and management. J Clin Dentistry Oral Health 2017; 1 (1): 1-2 J Clin Dentistry Oral Health 2017 Volume 1 Issue 1. 2017;2.
13. Alamoudi RA. The smear layer in endodontic: To keep or remove-an updated overview. Saudi Endodontic Journal. 2019;9(2):71.
14. Kosarieh E, Khavas SS, Rahimi A, Chiniforush N, Gutknecht N. The comparison of penetration depth of two different photosensitizers in root canals with and without smear layer: An in vitro study. Photodiagnosis Photodyn Ther. 2016;13:10-4. [DOI:10.1016/j.pdpdt.2015.11.005] [PMID]
15. Mohammadi Z, Shalavi S, Yaripour S, Kinoshita J-I, Manabe A, Kobayashi M, et al. Smear layer removing ability of root canal irrigation solutions: a review. J Contemp Dent Pract. 2019;20(3):395-402. [DOI:10.5005/jp-journals-10024-2528] [PMID]
16. Pashley DH, Livingston M. Effect of molecular size on permeability coefficients in human dentine. Arch Oral Biol. 1978;23(5):391-5. [DOI:10.1016/0003-9969(78)90098-5]
17. Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246-50. [DOI:10.1177/0748233713498458] [PMID]
18. Nima G, Soto-Montero J, Alves LA, Mattos-Graner RO, Giannini M. Photodynamic inactivation of Streptococcus mutans by curcumin in combination with EDTA. Dent Mater. 2021;37(1):e1-e14. [DOI:10.1016/j.dental.2020.09.015] [PMID]
19. Marini E, Di Giulio M, Magi G, Di Lodovico S, Cimarelli ME, Brenciani A, et al. Curcumin, an antibiotic resistance breaker against a multiresistant clinical isolate of Mycobacterium abscessus. Phytother Res. 2018;32(3):488-95. [DOI:10.1002/ptr.5994] [PMID]
20. Usacheva MN, Teichert MC, Biel MA. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram‐positive and gram‐negative microorganisms. Lasers in Surgery and Medicine: Lasers Surg Med. 2001;29(2):165-73. [DOI:10.1002/lsm.1105] [PMID]
21. Soria-Lozano P, Gilaberte Y, Paz-Cristobal M, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, et al. In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol. 2015;15(1):1-8. [DOI:10.1186/s12866-015-0524-3] [PMID] [PMCID]
22. Lavaee F, Badiei P, Yousefi M, Haddadi P. Comparison of the fungicidal efficacy of photodynamic therapy with methylene blue, silver nanoparticle, and their conjugation on oral Candida isolates using cell viability assay. Curr Med Mycol 2021;6(4):35-40. [DOI:10.18502/cmm.6.4.5332] [PMID] [PMCID]
23. Tønnesen HH. Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII. Die Pharmazie. 2002;57(12):820-4.
24. Paqué F, Luder H, Sener B, Zehnder M. Tubular sclerosis rather than the smear layer impedes dye penetration into the dentine of endodontically instrumented root canals. Int Endod J. 2006;39(1):18-25. [DOI:10.1111/j.1365-2591.2005.01042.x] [PMID]
25. Machado R, Garcia LdFR, da Silva Neto UX, Cruz Filho AdMd, Silva RG, Vansan LP. Evaluation of 17% EDTA and 10% citric acid in smear layer removal and tubular dentin sealer penetration. Microsc Res Tech. 2018;81(3):275-82. [DOI:10.1002/jemt.22976] [PMID]
26. Roghanizad N, Vatanpour M, Moradi Eslami L, Bahrami H. Comparison of WaveOne and ProTaper Universal preparation systems in the amount of smear layer/debris production: an in-vitro SEM study. J Res Dent Maxillofac Sci. 2017;2 (4):33-43. [DOI:10.29252/jrdms.2.4.33]
27. de Souza Matos F, da Silva FR, Paranhos LR, Moura CCG, Bresciani E, Valera MC. The effect of 17% EDTA and QMiX ultrasonic activation on smear layer removal and sealer penetration: Ex vivo study. Sci Rep. 2020;10(1):1-8. [DOI:10.1038/s41598-020-67303-z] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Research in Dental and Maxillofacial Sciences

Designed & Developed by : Yektaweb