Volume 5, Issue 2 (5-2020)                   J Res Dent Maxillofac Sci 2020, 5(2): 14-20 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asnaashari M, Meyari A, Hajrezai R, Paymanpour P, Behrooz N. Low-Pressure Radiofrequency Cold Plasma for Disinfection of Gutta-Percha Cones. J Res Dent Maxillofac Sci 2020; 5 (2) :14-20
URL: http://jrdms.dentaliau.ac.ir/article-1-270-en.html
1- Professor, Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
2- Postgraduate Student, Department of Restorative and Cosmetic Dentistry,Dental Faculty, Tehran Medical Sciences
3- Assistant Professor, Orthodontics Dept, Dental Faculty, Tehran Medical Sciences
4- Assistant Professor, Department of Endodontics, Shahid Beheshti University of Medical Sciences, Tehran, Iran , Payam_Paymanpour@yahoo.com
5- Postgraduate Student, Department of Restorative and Cosmetic Dentistry, Dental Faculty, Tehran Medical Sciences
Abstract:   (2883 Views)

Background and Aim: Different methods have been proposed for rapid disinfection of gutta-percha (GP) cones. This study aimed to assess the efficacy of low-pressure radiofrequency cold plasma (LRFCP) in disinfection of GP cones compared to three chemical disinfectants.
Materials and Methods: Seventy GP cones were allocated to seven groups of 10 each. All samples were initially sterilized with ethylene oxide (EO) and subsequently inoculated with Staphylococcus aureus (S. aureus), except for the negative control group (n=10). In the experimental groups (n=50), samples were subjected to one-minute chemical disinfection [5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and 10% Deconex® 53 PLUS) or LRFCP (30-second or one-minute). The effectiveness of disinfection was evaluated by counting the colony-forming units (CFUs). Data were analyzed using Kruskal-Wallis test (P=0.05).
Results: S. aureus was completely eradicated in all groups. LRFCP and 5.25% NaOCl were the most effective agents in disinfection of GP cones. In addition, 2% CHX was significantly weaker than the other agents (P<0.05). Deconex® 53 PLUS (10%) was more potent than 2% CHX; however, the difference between 10% Deconex® 53 PLUS and other experimental groups was not significant (P>0.05).  
Conclusion: LRFCP can be assumed as a noninvasive and efficient method for disinfection of GP cones.

Full-Text [PDF 275 kb]   (1344 Downloads) |   |   Full-Text (HTML)  (852 Views)  
Type of Study: Original article | Subject: Oral medicine

1. 1. Mozayeni MA, Zadeh YM, Paymanpour P, Ashraf H, Mozayani M. Evaluation of push-out bond strength of AH26 sealer using MTAD and combination of NaOCl and EDTA as final irrigation. Dent Res J (Isfahan). 2013 May;10(3):359-63.
2. Stashenko P. Etiology and pathogenesis of pulpitis and apical periodontitis. In: Ørstavik D, Pitt Ford TR. Essential endodontology. Blackwell Science, Oxford, 1998:42-67.
3. Mousavi SA, Ghoddusi J, Mohtasham N, Shahnaseri S, Paymanpour P, Kinoshita J. Human pulp response to direct pulp capping and miniature pulpotomy with MTA after application of topical dexamethasone: arandomized clinical trial. Iran Endod J. 2016 Spring;11(2):85-90.
4. Attin T, Zirkel C, Pelz K. Antibacterial Properties of Electron Beam-Sterilized Gutta-Percha Cones. J Endod. 2001 Mar;27(3):172-4. [DOI:10.1097/00004770-200103000-00006] [PMID]
5. Senia ES, Marraro RV, Mitchell JL, Lewis AG, Thomas L. Rapid sterilization of gutta-percha cones with 5.25% sodium hypochlorite. J Endod.1975 Apr;1(4):136-40. [DOI:10.1016/S0099-2399(75)80098-7]
6. Ozalp N, Okte Z, Ozcelik B. The rapid sterilization of gutta-percha cones with sodium hypochlorite and glutaraldehyde. J Endod. 2006 Dec;32(12):1202-4. [DOI:10.1016/j.joen.2006.08.009] [PMID]
7. Siqueira JF Jr, da Silva CH, Cerqueira M das D, Lopes HP, de Uzeda M. Effectiveness of four chemical solutions in eliminating Bacillus subtilis spores on gutta-percha cones. Endod Dent Traumatol. 1998 Jun;14(3):124-6. [DOI:10.1111/j.1600-9657.1998.tb00824.x] [PMID]
8. Montgomery S. Chemical decontamination of gutta-percha cones with polyvinylpyrrolidone-iodine. Oral Surg Oral Med Oral Pathol. 1971;31(2):258‐266. [DOI:10.1016/0030-4220(71)90081-8]
9. Frank RJ, Pelleu GB Jr. Glutaraldehyde decontamination of gutta-percha cones. J Endod. 1983 Sep;9(9):368-70. [DOI:10.1016/S0099-2399(83)80185-X]
10. Möller B,Örstavik D. Influence of antiseptic storage solutions on physical properties of endodontic guttapercha points. Eur J Oral Sci. 1985 Apr;93(2):158-61. [DOI:10.1111/j.1600-0722.1985.tb01325.x] [PMID]
11. Valois CR, Silva LP, Azevedo RB. Effects of 2% chlorhexidine and 5.25% sodium hypochlorite on gutta-percha cones studied by atomic force microscopy. Int Endod J. 2005 Jul;38(7):425-9. [DOI:10.1111/j.1365-2591.2005.00940.x] [PMID]
12. Lee MY, Park DS. An experimental study of the effect of the various antiseptic storage solutions on physical properties of gutta-percha cone. Res Dent Endod. 1991;16(1):209-15.
13. Hippler R, Kersten H, Schmidt M, Schoenbach KH. Low temperature plasmas. Berlin: Wiley, 2008:787.
14. Menashi WP.Treatment of surfaces. US Patent 3 383 163, May 14, 1968.
15. Kelly-Wintenberg K, Hodge A, Montie T, Deleanu L, Sherman D, Reece Roth J, et al. Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms. J Vac Sci Technol A. 1999;17(4):1539-44. [DOI:10.1116/1.581849]
16. Naseri M, Paymanpour P, Kangarloo A, Haddadpur S, Dianat O, Ketabi MA. Influence of motion pattern on apical transportation and centering ability of WaveOne single-file technique in curved root canals. Dent Res J (Isfahan). 2016Jan-Feb;13(1):13‐17. [DOI:10.4103/1735-3327.174690] [PMID] [PMCID]
17. Moorer WR, Genet JM. Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. Oral Surg Oral Med Oral Pathol. 1982 May;53(5):508-17. [DOI:10.1016/0030-4220(82)90468-6]
18. Weiger R, Manncke B, Löst C. Antibacterial effect of gutta-percha cones on endodontopathogenic microorganisms. Dtsch Zahnärztl Z. 1993;48:658-60.
19. da Motta PG, de Figueiredo CB, Maltos SM, Nicoli JR, Ribeiro Sobrinho AP, Maltos KL, et al. Efficacy of chemical sterilization and storage conditions of gutta-percha cones. Int Endod J. 2001 Sep;34(6):435-9. [DOI:10.1046/j.1365-2591.2001.00412.x] [PMID]
20. Linke HA, Chohayeb AA. Effective surface sterilization of gutta-percha points. Oral Surg Oral Med Oral Pathol Oral Radiol. 1983 Jan;55(1):73-7. [DOI:10.1016/0030-4220(83)90309-2]
21. Gomes BP, Vianna ME, Matsumoto CU, Rossi Vde P, Zaia AA, Ferraz CC, et al. Disinfection of gutta-percha cones with chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005 Oct;100(4):512-7. [DOI:10.1016/j.tripleo.2004.10.002] [PMID]
22. Royal MJ, Williamson AE, Drake DR. Comparison of 5.25% sodium hypochlorite, MTAD, and 2% chlorhexidine in the rapid disinfection of polycaprolactone-based root canal filling material. J Endod. 2007 Jan;33(1):42-4. [DOI:10.1016/j.joen.2006.07.021] [PMID]
23. Cardoso CL, Kotaka CR, Redmerski R, Guilhermetti M, Queiroz AF. Rapid decontamination of gutta-percha cones with sodium hypochlorite. J Endod. 1999 Jul;25(7):498-501. [DOI:10.1016/S0099-2399(99)80290-8]
24. Gomes BP, Ferraz CC, Vianna ME, Berber VB, Teixeira FB, Souza-Filho FJ. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int Endod J. 2001 Sep;34(6):424-8. [DOI:10.1046/j.1365-2591.2001.00410.x] [PMID]
25. Pang NS, Jung IY, Bae KS, Baek SH, Lee WC, Kum KY. Effects of short-term chemical disinfection of gutta-percha cones: identification of affected microbes and alterations in surface texture and physical properties. J Endod. 2007 May;33(5):594-8. [DOI:10.1016/j.joen.2007.01.019] [PMID]
26. Sauer WL, Weaver KD, Beals NB. Fatigue performance of ultra-high-molecular-weight polyethylene: effect of gamma radiation sterilization. Biomaterials. 1996 Oct;17(20):1929-35. [DOI:10.1016/0142-9612(96)82602-0]
27. Goldman M, Lee M, Gronsky R, Pruitt L. Oxidation of ultrahigh molecular weight polyethylene characterized by Fourier Transform Infrared Spectrometry. J Biomed Mater Res. 1997 Oct;37(1):43-50. https://doi.org/10.1002/(SICI)1097-4636(199710)37:1<43::AID-JBM6>3.0.CO;2-J [DOI:10.1002/(SICI)1097-4636(199710)37:13.0.CO;2-J]
28. Fridman A. Plasma Chemistry. Cambridge University Press, 2008:848-913. [DOI:10.1017/CBO9780511546075]
29. Raballand V, Benedikt J, Wunderlich J, Von Keudell A. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms. J Phys D Appl Phys. 2008 May;41(11):115207. [DOI:10.1088/0022-3727/41/11/115207]
30. Rossi F, Kylián O, Rauscher H, Hasiwa M, Gilliland D. Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J Phys. 2009 Nov;11(11):115017. [DOI:10.1088/1367-2630/11/11/115017]
31. Rauscher H, Kylián O, Benedikt J, von Keudell A, Rossi F. Elimination of biological contaminations from surfaces by plasma discharges: chemical sputtering. Chemphyschem. 2010 May 17;11(7):1382-9. [DOI:10.1002/cphc.200900757] [PMID]
32. Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P. Inactivation of Escherichia coli on almonds using nonthermal plasma. J Food Sci. 2007 Mar;72(2):M62-6. [DOI:10.1111/j.1750-3841.2007.00275.x] [PMID]
33. Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectr. 2004;233(1-3):81-6. [DOI:10.1016/j.ijms.2003.11.016]
34. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys. 2006;39(16):3494. [DOI:10.1088/0022-3727/39/16/S07]
35. Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221-9. [DOI:10.1016/j.foodcont.2015.03.003]
36. Hury S, Vidal DR, Desor F, Pelletier J, Lagarde T. A parametric study of the destruction efficiency of Bacillus spores in low pressure oxygen-based plasmas. Lett Appl Microbiol. 1998 Jun;26(6):417-21. [DOI:10.1046/j.1472-765X.1998.00365.x] [PMID]
37. Roth JR. Industrial Plasma Engineering: Volume 1: Principles. CRC Press, 1995:538.
38. Mejia M, Marin J, Restrepo G, Pulgarin C, Mielczarski E, Mielczarski J, et al. Self-cleaning modified TiO2-cotton pretreated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl Catal B Environ. 2009 Sep;91(1-2):481-8. [DOI:10.1016/j.apcatb.2009.06.017]
39. Martin IT, Dressen B, Boggs M, Liu Y, Henry CS, Fisher ER. Plasma Modification of PDMS Microfluidic Devices for Control of Electroosmotic Flow. Plasma Process Polym. 2007;4(4):414-24. [DOI:10.1002/ppap.200600197]
40. Gentsch R, Pippig F, Schmidt S, Cernoch P, Polleux J, Börner HG. Single-step electrospinning to bioactive polymer nanofibers. Macromolecules. 2011;44(3):453-61. [DOI:10.1021/ma102847a]
41. Slaney AM, Wright VA, Meloncelli PJ, Harris KD, West LJ, Lowary TL, et al. Biocompatible carbohydrate-functionalized stainless steel surfaces: a new method for passivating biomedical implants. ACS Appl Mater Interfaces. 2011 May;3(5):1601-12. [DOI:10.1021/am200158y] [PMID]
42. Hsu SH, Chang YL, Tu YC, Tsai CM, Su WF. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite. ACS Appl Mater Interfaces. 2013 Apr 24;5(8):2991-8. [DOI:10.1021/am302446t] [PMID]
43. Whittaker A, Graham E, Baxter R, Jones A, Richardson P, Meek G, et al. Plasma cleaning of dental instruments. JHosp Infect. 2004;56(1):37-41. [DOI:10.1016/j.jhin.2003.09.019] [PMID]
44. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol. 2005 Apr;187(7):2426-38. [DOI:10.1128/JB.187.7.2426-2438.2005] [PMID] [PMCID]
45. Noiri Y, Ehara A, Kawahara T, Takemura N, Ebisu S. Participation of bacterial biofilms in refractory and chronic periapical periodontitis. J Endod. 2002 Oct;28(10):679-83. [DOI:10.1097/00004770-200210000-00001] [PMID]
46. Takemura N, Noiri Y, Ehara A, Kawahara T, Noguchi N, Ebisu S. Single species biofilm‐forming ability of root canal isolates on gutta‐percha points. Eur J Oral Sci. 2004 Dec;112(6):523-9. [DOI:10.1111/j.1600-0722.2004.00165.x] [PMID]
47. Short RD, Dorn SO, Kuttler S. The crystallization of sodium hypochlorite on gutta-percha cones after the rapid-sterilization technique: an SEM study.J Endod. 2003 Oct;29(10):670-3. [DOI:10.1097/00004770-200310000-00015] [PMID]
48. Goldberg F, Massone E, Pruskin E, Zmener O. SEM study of surface architecture of gutta‐percha cones. Endod Dent Traumatol. 1991 Feb;7(1):15-8. [DOI:10.1111/j.1600-9657.1991.tb00177.x] [PMID]
49. Grossman LI, Meiman BW. Solution of pulp tissue by chemical agents. J Am Dent Assoc. 1941Feb;28(2):223-5. [DOI:10.14219/jada.archive.1941.0060]
50. Cohen S, Burns R. Pathways of the pulp. 7th ed: St. Louis: CV Mosby, 1994:509.
51. Ayliffe G. Minimal Access Therapy Decontamination Working Group. Decontamination of minimally invasive surgical endoscopes and accessories. J Hosp Infect. 2000 Sept;45(4):263-77. [DOI:10.1053/jhin.2000.0767] [PMID]
52. Montie TC, Kelly-Wintenberg K, Roth JR. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci. 2000;28(1):41-50. [DOI:10.1109/27.842860]
53. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P. Atmospheric pressure plasmas: A review. Spectrochim Acta B. 2006;61(1):2-30. [DOI:10.1016/j.sab.2005.10.003]
54. Cobine JD. Gaseous conductors: theory and engineering applications. New York, NY: Dover, 1958:218-225.
55. Butscher D, Van Loon H, Waskow A, Rudolf von Rohr P, Schuppler M. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int J Food Microbiol. 2016 Dec 5;238:222-32. [DOI:10.1016/j.ijfoodmicro.2016.09.006] [PMID]
56. Schnabel U, Niquet R, Krohmann U, Polak M, Schlüter O, Weltmann K, et al. Decontamination of microbiologically contaminated seeds by microwave driven discharge processed gas. JAgric Sci Appl. 2012;1(4):99-105. [DOI:10.14511/jasa.2012.010403]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Research in Dental and Maxillofacial Sciences

Designed & Developed by: Yektaweb