Background and Aim: This study aimed to assess the effect of horizontal cantilever on microgap and microleakage at the implant-straight abutment interface in cement-retained crowns. Materials and Methods: In this experimental study, 12 implant-abutment assemblies and 12 cement-retained crowns were evaluated. The implant fixtures were bone-level, and had 10 mm length and 4 mm diameter. Straight titanium abutments had 7 mm length, 4 mm diameter, and 1 mm gingival height with Morse-Taper connection. Two groups were evaluated: 6 cement-retained crowns with a horizontal cantilever (test group) and 6 cement-retained crows without a horizontal cantilever (case group). The assemblies underwent load cycling in a chewing simulator. Cyclic load (75 N) with 1 Hz frequency was applied along the longitudinal axis of each specimen to the triangular ridge between the mesiobuccal and mesiolingual cusps of the crown. The amount of microgap before and after cyclic loading, and the microleakage score after immersion in fuchsine were evaluated under a light microscope. Data were compared by t-test (alpha=0.05). Results: The change in microgap after cyclic loading compared with before was not significant in the control group (P=0.724). However, in the case group, the amount of microgap significantly increased after cyclic loading compared with before (P=0.000). Microleakage in the case group was significantly greater than that in the control group (P=0.019). Conclusion: Horizontal cantilever caused horizontal microgap and increased the microleakage at the implant-straight abutment interface. |
بازنشر اطلاعات | |
![]() |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |