Volume 8, Issue 1 (1-2023)                   J Res Dent Maxillofac Sci 2023, 8(1): 1-10 | Back to browse issues page


XML Print


1- Department of Orthodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran , Ehsan_dmd@yahoo.com
3- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Abstract:   (790 Views)
Background and Aim: Different MTA brands may have different push-out bond strength (PBS) values in 10 minutes and 4 hours. Thus, this study aimed to compare the PBS of RetroMTA, OrthoMTA, and ProRoot MTA.  
Materials and Methods: In this in vitro, experimental study, 54 dentin discs with 2 mm diameter and a central lumen with 1.3 mm radius were used in each of the RetroMTA, OrthoMTA, and ProRoot MTA groups (18 discs for each group). The samples were wrapped in a moist gauze and incubated at 37°C and 100% humidity. The PBS was measured by a universal testing machine at a crosshead speed of 1 mm/minute after 10 minutes and 4 hours. The mode of failure was also categorized by using a stereomicroscope. The mean PBS of the three groups was compared using two-way ANOVA. The mode of failure was analyzed by the Chi-square test.
Results: The interaction effect of time and material on PBS was not significant (P=0.227). At both time points, the PBS of the three groups was significantly different (P=0.001), and RetroMTA showed significantly higher PBS (P<0.014). However, the PBS of OrthoMTA and ProRoot MTA was not significantly different (P=0.695). The PBS of all materials at 4 hours was significantly higher than that at 10 minutes (P=0.001).
Conclusion: RetroMTA was superior to ProRoot MTA and OrthoMTA regarding the PBS after 4 hours.
Full-Text [PDF 883 kb]   (375 Downloads) |   |   Full-Text (HTML)  (326 Views)  
Type of Study: Original article | Subject: Endodontics

References
1. Hartwell GR, England MC. Healing of furcation perforations in primate teeth after repair with decalcified freeze-dried bone: a longitudinal study. J Endod. 1993 Jul; 19 (7):357-61. [DOI:10.1016/S0099-2399(06)81363-4] [PMID]
2. Gancedo-Caravia L, Garcia-Barbero E. Influence of humidity and setting time on the push-out strength of mineral trioxide aggregate obturations. J Endod. 2006 Sep; 32(9):894-6. [DOI:10.1016/j.joen.2006.03.004] [PMID]
3. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod. 2006 Jun;32(6):569-72. [DOI:10.1016/j.joen.2005.08.006] [PMID]
4. Shokouhinejad N, Nekoofar MH, Iravani A, Kharrazifard MJ, Dummer PM. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J Endod. 2010 May;36(5):871-4. [DOI:10.1016/j.joen.2009.12.025] [PMID]
5. Hashem AA, Wanees Amin SA. The effect of acidity on dislodgment resistance of mineral trioxide aggregate and bioaggregate in furcation perforations: an in vitro comparative study. J Endod. 2012 Feb;38(2):245-9. [DOI:10.1016/j.joen.2011.09.013] [PMID]
6. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993 Dec;19(12):591-5. [DOI:10.1016/S0099-2399(06)80271-2] [PMID]
7. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993 Nov;19(11):541-4. [DOI:10.1016/S0099-2399(06)81282-3] [PMID]
8. Belli S, Zhang Y, Pereira PN, Pashley DH. Adhesive sealing of the pulp chamber. J Endod. 2001 Aug;27(8):521-6. [DOI:10.1097/00004770-200108000-00006] [PMID]
9. Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005 Sep;31(9): 665-8. [DOI:10.1097/01.don.0000157993.89164.be] [PMID]
10. Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part II: leakage and biocompatibility investigations. J Endod. 2010 Feb;36(2): 190-202. [DOI:10.1016/j.joen.2009.09.010] [PMID]
11. Johnson BR. Considerations in the selection of a root-end filling material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999 Apr;87(4):398-404. [DOI:10.1016/S1079-2104(99)70237-4] [PMID]
12. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part III: Clinical applications, drawbacks, and mechanism of action. J Endod. 2010 Mar;36(3):400-13. [DOI:10.1016/j.joen.2009.09.009] [PMID]
13. Eskandarizadeh A, Shahpasandzadeh MH, Shahpasandzadeh M, Torabi M, Parirokh M. A comparative study on dental pulp response to calcium hydroxide, white and grey mineral trioxide aggregate as pulp capping agents. J Conserv Dent. 2011 Oct;14(4):351-5. [DOI:10.4103/0972-0707.87196] [PMID] [PMCID]
14. Adl A, Sobhnamayan F, Kazemi O. Comparison of push-out bond strength of mineral trioxide aggregate and calcium enriched mixture cement as root end filling materials. Dent Res J (Isfahan). 2014 Sep;11(5):564-7.
15. Ertas H, Kucukyilmaz E, Ok E, Uysal B. Push-out bond strength of different mineral trioxide aggregates. Eur J Dent. 2014 Jul;8(3):348-52. [DOI:10.4103/1305-7456.137646] [PMID] [PMCID]
16. BioMTA technologies. Physiochemical analysis. Available at: https://www.biomta.com.
17. Chang SW, Baek SH, Yang HC, Seo DG, Hong ST, Han SH, Lee Y, Gu Y, Kwon HB, Lee W, Bae KS, Kum KY. Heavy metal analysis of ortho MTA and ProRoot MTA. J Endod. 2011 Dec; 37(12):1673-6. [DOI:10.1016/j.joen.2011.08.020] [PMID]
18. Torabinejad M, Chivian N. Clinical appslications of mineral trioxide aggregate. J Endod. 1999 Mar;25(3):197-205. [DOI:10.1016/S0099-2399(99)80142-3] [PMID]
19. Saunders WP. A prospective clinical study of periradicular surgery using mineral trioxide aggregate as a root-end filling. J Endod. 2008 Jun;34(6):660-5. [DOI:10.1016/j.joen.2008.03.002] [PMID]
20. Lussi A, Brunner M, Portmann P, Buergin W. Condensation pressure during amalgam placement in patients. Eur J Oral Sci. 1995 Dec;103(6):388-93. [DOI:10.1111/j.1600-0722.1995.tb01862.x] [PMID]
21. Saghiri MA, Shokouhinejad N, Lotfi M, Aminsobhani M, Saghiri AM. Push-out bond strength of mineral trioxide aggregate in the presence of alkaline pH. J Endod. 2010 Nov; 36(11):1856-9. [DOI:10.1016/j.joen.2010.08.022] [PMID]
22. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H. Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent Traumatol. 2013 Aug;29(4):323-7. [DOI:10.1111/j.1600-9657.2012.01176.x] [PMID]
23. Chen Q, Wei XY, Yi M, Bai YY, Cai Q, Wang XZ. Effect on the bond strengths of glass fiber posts functionalized with polydopamine after etching with hydrogen peroxide. Dent Mater J. 2015;34(6):740-5. [DOI:10.4012/dmj.2014-259] [PMID]
24. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005 Feb;31(2):97-100. [DOI:10.1097/01.DON.0000133155.04468.41] [PMID]
25. Goracci C, Tavares AU, Fabianelli A, Monticelli F, Raffaelli O, Cardoso PC, Tay F, Ferrari M. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci. 2004 Aug;112(4):353-61. [DOI:10.1111/j.1600-0722.2004.00146.x] [PMID]
26. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010 Jan;36(1):16-27. [DOI:10.1016/j.joen.2009.09.006] [PMID]
27. Gandolfi MG, Taddei P, Siboni F, Modena E, Ginebra MP, Prati C. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Int Endod J. 2011 Oct;44(10):938-49. [DOI:10.1111/j.1365-2591.2011.01907.x] [PMID]
28. Kim M, Yang W, Kim H, Ko H. Comparison of the biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J Endod. 2014 Oct;40(10):1649-53. [DOI:10.1016/j.joen.2014.04.013] [PMID]
29. Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement. J Endod. 2009 Feb;35(2):243-50. [DOI:10.1016/j.joen.2008.10.026] [PMID]
30. Lee BN, Son HJ, Noh HJ, Koh JT, Chang HS, Hwang IN, Hwang YC, Oh WM. Cytotoxicity of newly developed ortho MTA root-end filling materials. J Endod. 2012 Dec; 38(12): 1627-30. [DOI:10.1016/j.joen.2012.09.004] [PMID]
31. Shahi S, Rahimi S, Yavari HR, Samiei M, Janani M, Bahari M, Abdolrahimi M, Pakdel F, Aghbali A. Effects of various mixing techniques on push-out bond strengths of white mineral trioxide aggregate. J Endod. 2012 Apr;38(4):501-4. [DOI:10.1016/j.joen.2012.01.001] [PMID]
32. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007 Jun;40(6):462-70. [DOI:10.1111/j.1365-2591.2007.01248.x] [PMID]
33. Nekoofar MH, Haddad DC, Nolde J, Aseeley Z. Water content of ampoule packaged with ProRoot MTA. Int Endod J. 2009 Jun;42(6):549-51; author reply 552-3. [DOI:10.1111/j.1365-2591.2009.01541.x] [PMID]
34. Alsubait SA, Hashem Q, AlHargan N, AlMohimeed K, Alkahtani A. Comparative evaluation of push-out bond strength of ProRoot MTA, bioaggregate and biodentine. J Contemp Dent Pract. 2014 May 1;15(3):336-40. [DOI:10.5005/jp-journals-10024-1539] [PMID]
35. Aggarwal V, Singla M, Miglani S, Kohli S. Comparative evaluation of push-out bond strength of ProRoot MTA, Biodentine, and MTA Plus in furcation perforation repair. J Conserv Dent. 2013 Sep;16(5):462-5. doi: 10.4103/0972-0707.117504. Erratum in: J Conserv Dent. 2014 Jan;17(1):95. [DOI:10.4103/0972-0707.117504] [PMID] [PMCID]
36. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res. 2012 May;91(5):454-9. [DOI:10.1177/0022034512443068] [PMID] [PMCID]
37. Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J Endod. 2013 Mar;39(3):380-4. [DOI:10.1016/j.joen.2012.11.033] [PMID]
38. Hong ST, Bae KS, Baek SH, Kum KY, Shon WJ, Lee W. Effects of root canal irrigants on the push-out strength and hydration behavior of accelerated mineral trioxide aggregate in its early setting phase. J Endod. 2010;36(12):1995-9. [DOI:10.1016/j.joen.2010.08.039] [PMID]
39. Vanderweele RA, Schwartz SA, Beeson TJ. Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J Endod. 2006 May;32(5):421-4. [DOI:10.1016/j.joen.2005.09.007] [PMID]
40. Rahoma A, AlShwaimi E, Majeed A. Push-out bond strength of different types of mineral trioxide aggregate in root dentin. Int J Health Sci (Qassim). 2018 Sep-Oct;12 (5):66-9.
41. Jain P, Nanda Z, Deore R, Gandhi A. Effect of acidic environment and intracanal medicament on push-out bond strength of biodentine and mineral trioxide aggregate plus: an in vitro study. Med Pharm Rep. 2019 Jul;92(3):277-81. [DOI:10.15386/mpr-1057]
42. Prasanthi P, Garlapati R, Nagesh B, Sujana V, Kiran Naik KM, Yamini B. Effect of 17% ethylenediaminetetraacetic acid and 0.2% chitosan on pushout bond strength of biodentine and ProRoot mineral trioxide aggregate: An in vitro study. J Conserv Dent. 2019 Jul-Aug;22(4):387-90. [DOI:10.4103/JCD.JCD_56_19] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.