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Abstract 
Background and Aim: Lip incompetence is defined as a habitual gap 
of more than 3-4 mm between the lips at rest, which can contribute to 
oral health issues and malocclusions. This study aimed to propose a 
deep learning-based model for automatic detection of lip separation on 
orthodontic photographs.    
Materials and Methods: This retrospective observational study 
employed a balanced dataset of 800 clinical images, comprising 400 
cases of lip incompetence and 400 cases of lip competence. An auto-
cropping technique based on averaged manual cropping coordinates 
was used to isolate the lip region. The cropped images were resized to 
70×70 pixels and normalized before feeding into a novel attention-
based residual connection convolutional neural network (ARN-CNN). 
The model incorporated both residual connections and attention 
modules to enhance feature learning and training stability. Data 
augmentation (e.g., rotation and scaling) was applied to improve 
generalizability. Training was conducted using 5-fold cross-validation, 
with an external test set to evaluate performance and reduce 
overfitting. Metrics such as accuracy, precision, recall, F1 score, 
receiver-operating characteristic curve-area under the curve (ROC-
AUC), and a confusion matrix were used for performance evaluation.    
Results: The ARN-CNN achieved 95% accuracy on the test set. For the 
competent class, precision was 0.97, recall was 0.94, and F1 score was 
0.96. These values were 0.94, 0.96, and 0.95, respectively, for the 
incompetent class with an AUC of 0.98. 
Conclusion: The ARN-CNN model effectively identified lip 
incompetence, highlighting the potential of deep learning to support 
orthodontic diagnosis through image-based analysis.  
Keywords: Artificial Intelligence; Deep Learning; Malocclusion; 
Convolutional Neural Networks; Orthodontics 
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Introduction 
Facial soft tissue analysis is essential for 

evaluation of maxillofacial growth. The 
correlation of soft tissue indices and skeletal and 
occlusal changes in malocclusions has been 
previously documented [1], indicating that soft 
tissue analysis can provide information about 
skeletal and dental abnormalities, serving as a 
diagnostic tool. However, orthodontists must 
consider soft tissue adaptation of patients in their 
treatment plans, considering soft tissue 
limitations in terms of esthetics, stability, and 
function [2]. 

One critical aspect of facial soft tissue analysis 
is assessment of lip competence and the role of lip 
incompetence in growth and development of the 
craniofacial complex [3, 4]. Incompetent lips are 
characterized by lip separation by more than 3-4 
mm [5], which can lead to significant oral 
complications due to inadequate lip sealing [6]. A 
relationship has been identified between 
incompetent lips and malocclusions, including 
vertical and sagittal skeletal and dental 
discrepancies [4]. In patients with normal 
occlusion who exhibit incompetent lips, 
dentofacial morphology is likely to be the 
underlying cause [1]. Thus, assessment of 
incompetent lips can provide important insights 
into the overall appearance and structure                  
of the face. 

Various methods, such as visual examination, 
cephalometric radiographs, and photography, are 
used to evaluate lip sealing [1, 7-11]. Recently, 
application of artificial intelligence (AI) has 
gained popularity for enhancement of the 
accuracy and efficiency in diagnosis and 
treatment planning [12]. AI, as a machine 
learning technology, learns from data and 
autonomously solves problems, offering rapid 
diagnosis and treatment planning capabilities. 
Deep learning, a subset of machine learning, 
utilizes multi-layered neural networks to 
automatically learn and represent complex 

patterns and features from large datasets, 
enabling advanced capabilities in tasks such as 
image recognition, natural language processing, 
and more [13]. Convolutional neural networks 
(CNNs) are a class of deep learning models 
specifically designed for image processing [14]. 
By leveraging convolutional layers, CNNs 
automatically extract and learn hierarchical 
features from raw image data, enabling the 
detection of complex patterns and structures. 
Their ability to capture spatial hierarchies makes 
them highly effective for tasks like image 
classification and object detection. One challenge 
encountered in measuring the magnitude of lip 
separation (which is considered abnormal if it 
exceeds 4 mm) on photographs is lack of a 
suitable millimeter-scale reference. Therefore, it 
would be ideal to develop a deep learning-based 
method for detection of lip incompetence                
on photographs.  

AI has shown promising applications in 
orthodontics, particularly in analyzing clinical 
photographs and assisting with diagnosis and 
treatment planning. AI models, especially CNNs, 
have demonstrated high accuracy in classifying 
orthodontic photographs according to their 
orientations [15]. These systems can also aid in 
detecting landmarks, categorizing dental 
crowding, and determining the necessity of tooth 
extraction with impressive precision [16]. AI has 
achieved state-of-the-art results in various 
orthodontic applications, including automated 
landmark detection on lateral cephalograms, 
skeletal classification, and decision-making 
regarding tooth extractions [17]. While AI shows 
potential to enhance orthodontic care by saving 
time and providing accuracy comparable to 
trained dentists, challenges remain in 
generalizability and standardization across 
studies [18]. As the field progresses, researchers 
are working towards implementing AI into 
clinical orthodontic workflows and addressing 
real-world evaluation concerns. 
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Considering the limited number of studies on 
the automatic detection of soft tissue problems 
on photographs using deep learning, this study 
was conducted to investigate lip competence 
through deep learning models, and also 
contribute to development of a fully automated 
system for generating a problem list in 
orthodontics. As a preliminary step, the present 
study aimed to develop a CNN model for 
automatic detection of lip incompetence on 
frontal and profile photographs. 
 
Materials and Methods 
Dataset preparation: 

This study was a retrospective observational 
study with a deep learning component. It was 
approved by the ethics committee of Shahid 
Beheshti University of Medical Sciences 
(IR.SBMU.DRC.REC.1402.102). Images that met 
the standard criteria for orthodontic 
photography were selected from the archives of 
the Orthodontics Department of Shahid Beheshti 
Dental School. These criteria included specific 
angles, natural head position, appropriate 
lighting, and high resolution, ensuring that all 
critical facial features, particularly the mouth and 
its surrounding areas, were clearly visible [19, 
20]. Each image was thoroughly reviewed and 
validated to ensure that it met the necessary 
standards for precise analysis. 

A dataset of 800 images (at rest, natural head 
position) was created, comprising of 400 images 
of patients with lip incompetence and 400 
patients with lip competence. The dataset 
included patients between 8 to 50 years of age, 
including 57% females and 43% males. Lip 
incompetence was defined as lip separation by 
more than 4 mm, based on the patients’ 
orthodontic records and direct clinical 
measurements. This process was validated by 
three experienced orthodontists. Next, the 
images were labeled according to the lip 
separation status (incompetent or competent) by 

three orthodontists, and a consensus approach 
was used to confirm labeling accuracy. 

All data were utilized for model training and 
validation through 5-fold cross-validation. To 
further evaluate the model's performance and 
mitigate overfitting, an additional test set 
comprising of 61 new profile images (25 images 
with lip incompetence and 36 images with lip 
competence) and 56 new frontal images (31 
images with lip incompetence and 25 images with 
lip competence) were collected after finalizing 
the model and hyperparameters. These test 
samples included images sourced from Shahid 
Beheshti Dental School. By separating the test 
data from the training and validation sets used in 
the 5-fold cross-validation, we ensured data 
leakage prevention and robust evaluation of the 
model's generalizability (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Pipeline of the study 
 

Importantly, the test data were evaluated only 
once to avoid any possibility of tuning the model 
based on the test results, thereby maintaining the 
integrity of the model's performance assessment. 
This approach ensured that the final evaluation 
reflected the model's true ability to generalize to 
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new, unseen data without any bias introduced by 
repeated testing or adjustments.  
Preprocessing: 

The image data underwent preprocessing. 
Both frontal and profile images contained 
significant extraneous regions outside the lip 
area. Therefore, we utilized a technique called 
"auto-crop" to separate the lip region (region of 
interest) on both frontal and profile images. To 
implement automatic cropping, we initially 
identified a rectangular region around the lip 
area on each image manually. Specifically, we 
determined a rectangular region within the lip 
area for each image (defined by 4 coordinates, 
including X and Y). Subsequently, we computed 
the average coordinates of these rectangle 
corners across the training samples to serve as 
the final coordinates for automatic image 
cropping. For each dimension (X and Y), this 
involved: 
• Calculating the mean start and end X 

coordinates relative to image width across all 
images. 

• Calculating the mean start and end Y 
coordinates relative to image height across all 
images. 

Considering potential variations in aspect 
ratios of the images, we used the following 
formula for automatic cropping of the lip area on 
profile and frontal images: 
• Frontal cropping area (rectangle): The 

average coordinates for start and end points 
on the image were defined as follows:  
o Start x = image width × 0.30  
o End x = image width × 0.72  
o Start y = image height × 0.60  
o End y = image height × 0.85 

• Profile cropping area (rectangle): The average 
coordinates for start and end points on the 
image were defined as follows:  
o Start x = image width × 0.65 
o End x = image width × 0.92  

o Start y = image height × 0.64 
o End y = image height × 0.91 

These values were determined by averaging 
the manually defined cropping coordinates 
across the training dataset. The formulae use 
relative proportions within the image rather than 
absolute dimensions. This ensures that, even with 
changes in aspect ratio, the cropped region 
remains close to the target area, effectively 
handling variations in image aspect ratio. These 
dimensions were derived from the average 
cropping regions observed in the training set of 
frontal and profile images. For the test images, 
cropping was performed automatically based on 
these average coordinates, without manual 
adjustment, ensuring consistency with the 
training phase. This approach enabled 
simultaneous evaluation of the automatic 
cropping process and the model's performance. 
Therefore, the auto-crop technique was 
employed while adhering to the standard 
principles of orthodontic photography on profile 
and frontal images (including head position, etc.), 
This method has limitations, which are discussed 
in the Discussion section. 

As the next step in the preprocessing pipeline, 
the images were converted to grayscale and then 
enhanced using contrast-limited adaptive 
histogram equalization (CLAHE) to mitigate 
contrast variations. CLAHE is a technique that 
enhances the contrast of images by adapting 
histogram equalization to local regions and 
limiting amplification of noise, which improves 
the visibility of features in both bright and dark 
areas [21]. CLAHE can enhance CNN learning as 
part of the data preprocessing pipeline, especially 
in cases where the data suffer from low contrast 
or uneven illumination [22-24]. Subsequently, 
the images were resized to 70x70 pixels and 
normalized (scaling pixel values between 0 and 
1) to prepare them for input into the CNN. We 
also applied various data augmentation 
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techniques, including rotation, horizontal flipping 
(for frontal images only), translation, scaling, and 
shearing (Figure 2). 
Model architecture: 

This study employed a hybrid architecture 
that integrates attention modules with residual 
connections [25] (ARN-CNN) (Figure 3). This 
model consists of two primary components: 
1. Attention module: 

   The attention module is designed to enhance 
feature representation by applying an attention 
mechanism. It includes Conv2D layers with 
specified filters, followed by ReLU and sigmoid 
activation functions. The attention mechanism is 
implemented by performing element-wise 
multiplication between the processed features 
and the original input. 
2. Residual block: 

Residual blocks are constructed using Conv2D 
layers with varying filter sizes and batch 
normalization. Each residual block is followed by 
the application of the attention module. Residual 
connections are incorporated to sum the output 
of Conv2D layers with the input tensor, 
facilitating improved gradient flow and feature 
learning. 

 
 
 
 
 
 
 

Figure 2. Data augmentation techniques applied in this 
study 
 
 

 

 

 

 

 

Figure 1. Proposed architecture. The final Dense layer 
reaches two probabilities: incompetence and competence 

The model processes inputs through a series 
of Conv2D layers, MaxPooling2D operations, and 
attention modules. Residual blocks, which form 
the central part of the network, progressively 
increase the filter size and count. The network 
concludes with Flatten, Dense, and Dropout 
layers to generate the final output, employing a 
softmax activation function for classification 
purposes. For comparative evaluation, we also 
utilized the ResNet50 architecture with fine-
tuned transfer learning. Regularization 
techniques were applied to control model 
complexity and prevent overfitting. Specifically, 
L2 regularization was applied to the Dense layer 
kernels to constrain the model's complexity, 
while L1 regularization was used for the activities 
and biases of the Dense layers to maintain 
simplicity and enhance generalization. These 
regularization strategies were implemented 
during training to improve model performance 
and reduce overfitting. 
Model training and evaluation: 

The coding for this project and training-
validation were conducted in Python 3.8 using 
TensorFlow 2.6 and Keras 2.4, utilizing a NVIDIA 
GeForce RTX 3090 graphics card. For validation, 
the 5-fold cross-validation method was 
employed. In this approach, the data were divided 
into 5 equal parts. In each training iteration, one 
of these parts served as the test data, while the 
remaining parts were used for training of the CNN 
model. The model was trained on the training 
data and evaluated on the test data. This process 
was repeated 5 times, with each part used once as 
the test data, and the average performance  
across these 5 iterations was reported as the 
validation metric. 

This method was beneficial for hyperparame-
ter tuning, which was performed using the Grid 
search technique. This involved optimizing 
parameters such as the number and size of filters 
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in Conv2D layers and attention modules, 
selecting the optimal optimizer for training the 
network (e.g., Adamax or Adam), learning rate 
determination, setting dropout rates to mitigate 
overfitting, and choosing kernel sizes for feature 
extraction from images. A dropout rate of 0.45 
and a learning rate of 0.001 were selected.     
These parameters were tuned by executing the 
model across all possible combinations and 
comparing the resulting accuracies on different 
validation sets. 

To prevent data leakage and ensure that the 
test data did not influence the model training 
process, the following measures were 
implemented: Test data were completely 
separated from the training and validation data. 
After finalizing the model and hyperparameters, 
independent test data were collected from other 
centers to ensure no influence or tuning based on 
the test data. The test data were evaluated only 
once to prevent model optimization based on test 
results, preserving the integrity of the final 
assessment. For the final evaluation, new and 
independent data were used, which were not 
involved in the training or validation phases at 
any point. 

Finally, the model was tested only once on 
separate test datasets collected independently 
from a dedicated center. The automatic cropping 
successfully cropped the correct region in all test 
data, clearly isolating the lip area. These datasets 
were classified by three orthodontists based on 
lip competence or incompetence. The model's 
performance on these test datasets reflected its 
final accuracy in this study. For the final analysis 
and evaluation of the model's performance, the 
following metrics were used: 
• Accuracy: The ratio of correctly classified 

samples to the total number of samples. 
Accuracy serves as the primary metric for 
evaluation of model performance. 

• Confusion matrix: Provides a detailed 
analysis of the results, including the number of 
true positives (TPs), false positives (FPs), true 
negatives (TNs), and false negatives (FNs) for 
each class. 

• Precision and recall: Calculated for each 
class, these metrics help evaluate the model's 
ability to correctly identify positive and 
negative samples. 

• F1-score: The harmonic mean of precision and 
recall, providing a balanced measure between 
the two. 

• Receiver-operating characteristic (ROC) 
curve and area under the curve (AUC): The 
ROC curve and the AUC assess the model's 
performance in distinguishing between 
classes [26]. 

• Log loss: Log loss is a metric used to evaluate 
the performance of probabilistic classification 
models, measuring the discrepancy between 
predicted probabilities and actual outcomes, 
with lower values indicating better model 
accuracy [27]. 

• Gradient-weighted class activation 
mapping (Grad CAM): Grad CAM  is a 
technique used in CNNs to visualize and 
interpret which regions of an input image are 
most influential in predicting the target class, 
providing insights into the model's decision-
making process [28, 29]. 

 
Results 

Table 1 presents the performance of ARN-CNN 
and ResNet50 models (profile and frontal 
images) on the test datasets. For profile images, 
ARN-CNN achieved a log loss of 0.17, F1-score of 
0.96, recall of 0.94, and precision of 0.97 for 
competent lips; while, ResNet50 had a log loss of 
0.18, F1-score of 0.96, recall of 0.97, and precision 
of 0.95. For incompetent lips, ARN-CNN scored a 
F1-score of 0.94, while ResNet50 scored 0.94. For 
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frontal images, ARN-CNN had a log loss of 0.05, 
F1-score of 0.98, recall of 1.00, and precision of 
0.96 for competent lips; while ResNet50 had a log 
loss of 0.08, F1-score of 0.98, recall of 1.00, and 
precision of 0.96. Both models showed similar 
performance, with ARN-CNN slightly 
outperforming ResNet50 in frontal view. 

Figures 4 and 5 correspond to the profile and 
frontal model performances, respectively. In 
Figures 4A and 4B, the learning curve graphs 
illustrate training and validation metrics 
including accuracy and loss for the profile 
classification model across epochs. Figure 4C 
displays a confusion matrix highlighting three 
misclassified samples among all test instances. An 
example of misclassification is provided in Figure 
4C, showing the probability percentage 
associated with competence and incompetence 
lips to be 57% and 43%, respectively. Figure 4D 
showcases the ROC curve and AUC value, 
providing a comprehensive evaluation of model 
performance. Figure 4E presents the model's 
confidence scores for each test sample, with 
incorrect classifications marked by red circles. 
The overall confidence level for the test data 
classification was 95%. In Figure 4's Grad CAM 
section, the images reveal the specific areas 
where the model concentrates its attention on 
selected test data samples. Additionally, in the 
Feature Maps section, an example of model input 
and output feature maps of each convolutional 

layer is presented for interpretation of             
model behavior. 

Figures 5A and 5B display the learning curve 
graphs for accuracy and loss during training and 
validation epochs for the frontal image 
classification model. Figure 5C exhibits a 
confusion matrix indicating one misclassified 
sample among all test instances. An example of 
misclassification is provided in Figure 5C, where 
the probability percentage related to competent 
and incompetent lips was 41% and 59%, 
respectively (correct label: incompetent). Figure 
5D presents the ROC curve and AUC value, 
providing an assessment of model performance 
on the frontal image classification task. Figure 5E 
shows the model's confidence scores for each test 
sample, with incorrect classifications marked by 
red circles. The overall confidence level for the 
test data classification was 97%. In Figure 5's 
Grad CAM section, the images highlight the 
regions where the model directs its attention to 
selected test data samples. Similarly, in the 
Feature Maps section, an example of model input 
and output feature maps of each convolutional 
layer is provided for interpretation of                 
model behavior. 

Figure 6 shows a comparison of Grad CAM 
across different models. It illustrates the regions 
of input images that each model emphasizes 
when making predictions, providing a visual 
comparison of how attention is allocated among 
different models. 

 
Table 1. Performance of ARN-CNN and ResNet50 models (profile and frontal) on the test datasets 
 

 Model Class Accuracy Precision Recall F1-Score Log loss 

Profile 
ARN-CNN 

Competent 0.95 0.97 0.94 0.96 0.17 Incompetent  0.92 0.96 0.94 

Resnet50 
Competent 0.95 0.95 0.97 0.96 0.18 Incompetent  0.96 0.92 0.94 

Frontal 
ARN-CNN 

Competent 0.98 0.96 1.00 0.98 0.05 Incompetent  1.00 0.97 0.98 

Resnet50 
Competent 0.98 0.96 1.00 0.98 0.08 Incompetent  1.00 0.97 0.98 
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Figure 4. Performance of the profile image classification model on the test data 
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Figure 5.  Performance of the frontal image classification model on the test data 
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Figure 6. Comparison of Grad CAM across different models 

 
Discussion  

This study aimed to design and develop an AI 
model for automatic detection of lip 
incompetence, with performance evaluated on a 
separate test dataset. The results demonstrated 
that the model was more efficient for detecting lip 
incompetence on the frontal view compared to 
the profile view. Although both architectures 
showed similar performance levels, Grad CAM 
visualizations revealed that the ARN-CNN 
architecture specifically focused on lip areas 
when detecting lip separation. The trained model 
of this study was integrated into an orthodontic 
diagnostic software developed in C# within the 
Visual Studio environment.  

Lip incompetence, which exposes the teeth 
and increases the risk of traumatic dental injuries 
[30], can also lead to gingivitis and periodontal 
disease due to constant mouth breathing [6]. 
Proper lip closure is essential for maintaining 
oral health by preventing excessive gingival and 
tooth show. Clinicians addressing lip 
incompetence should consider factors such as 

airway obstructions, protruded upper incisors, 
and skeletal abnormalities, as correcting these 
issues can enhance lip competence and overall 
oral function. AI algorithms, when trained on 
extensive datasets of lip incompetence cases, 
have the potential to improve the detection of 
subtle signs associated with this condition [31]. 
By analyzing facial images, including lip position 
and movement, AI systems could offer valuable 
diagnostic insights and quantify lip parameters 
such as height, symmetry, and dynamics, 
complementing traditional clinical evaluations.  

To remove extraneous regions from the 
images, we utilized an automatic cropping (auto-
crop) technique. Despite its effectiveness, the 
automatic cropping method may struggle with 
extreme variations in facial positioning or image 
quality, potentially leading to suboptimal 
cropping in certain cases. Additionally, reliance 
on fixed proportional coordinates may not 
account for all individual variations in lip 
positioning, which could affect accuracy. If the 
images do not adhere to the standards of 
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orthodontic photography, this issue may become 
more pronounced. Comparison of our automatic 
image cropping method with Al-Mahadeen et al.'s 
[32] approach reveals notable differences. Our 
method relies on fixed relative proportions based 
on image dimensions, ensuring consistent 
cropping across varying aspect ratios and 
simplifying implementation. Conversely, Al-
Mahadeen et al.'s method [32] employs pixel-
based object detection to define cropping 
coordinates, which can achieve higher accuracy 
in targeting specific features but involves greater 
complexity. However, this method successfully 
performed automatic cropping on all test data, 
ensuring consistency and accuracy throughout 
the testing phase. For future studies, it is 
recommended to use the MediaPipe model [33] 
for more accurate facial landmark detection and 
cropping, which can adapt better to individual 
variations and maintain higher precision in 
diverse image conditions. In addition to our 
method and Al-Mahadeen et al.'s approach [32], 
other prominent image cropping methods 
include R-CNN, Fast R-CNN, Faster R-CNN, YOLO, 
and deformable part models, each offering 
distinct advantages [34]. However, the method 
discussed in the present study performed well on 
separate test data and appears well-suited for 
orthodontic photography, adhering to a       
specific standard. 

Several studies have explored AI accuracy in 
orthodontics [35, 36]. For example, Yu et al. [37] 
developed a robust skeletal diagnostic system 
using CNNs with lateral cephalograms. 
Nakornnoi and Chanmanee [38] assessed the 
accuracy of Digital Imaging software in predicting 
soft tissue changes during orthodontic 
treatments, including non-extraction and 
extraction treatments, and orthognathic surgery. 
Jeong et al. [39] demonstrated that CNNs could 
accurately assess soft tissue profiles for 
orthognathic surgery using only facial 
photographs, which aligns with our findings. 

However, their study would benefit from a larger 
sample size to enhance accuracy. Tanikawa and 
Yamashiro [40] confirmed the clinical 
acceptability of AI systems in predicting facial 
morphology post-treatment, consistent with our 
results. The novelty of our research lies in its 
focus on AI for detecting lip incompetence, an 
area previously unexplored. Our study utilized 
deep learning techniques that are well-
recognized and widely applied in both research 
and industry. Reinforcement learning algorithms, 
which have been utilized in the medical field to 
optimize clinical diagnostic algorithms, hold 
significant potential for advancing clinical 
orthodontics in the future [41]. A significant 
challenge is the availability of extensive datasets, 
which is crucial for training effective AI models 
due to ethical and confidentiality concerns [42]. 

The present study highlights the potential of 
deep learning for automated lip competence 
analysis using orthodontic photographs. Given 
that these models are classification-based, future 
research should consider exploring regression 
methods and key point detection techniques for 
enhanced accuracy. Further research should 
evaluate the method’s efficacy and accuracy in 
patients with malocclusions, variations in vertical 
dimension, and craniofacial issues. Expanding 
this analysis to include frontal and profile images, 
as well as cephalometric radiographs, with larger 
sample sizes, could improve predictive models 
and explore changes in orthodontic metrics. AI’s 
role in medicine is evolving from associative 
inference to predictive treatment planning, and 
enhancing the interpretability of deep learning 
models will provide deeper insights into these 
predictions. AI models require robust training 
data and validation to ensure reliable 
performance. Ethical considerations, patient 
privacy, and informed consent are paramount in 
clinical AI applications. AI should complement, 
not replace, clinical judgment, and collaboration 
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with experts in AI and oral medicine is crucial for 
successful implementation [21, 43]. 

 
Conclusion 

This study demonstrated the significant 
potential of deep learning algorithms for 
automated detection of lip incompetence on 
orthodontic photographs. While AI presents 
promising advancements in the analysis and 
detection of lip incompetence, ongoing research 
and development are essential to refine these 
models and ensure their practical utility in 
clinical settings. 
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