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Abstract 

Background and Aim: Lip incompetence is defined as a habitual gap 

of more than 3-4 mm between the lips at rest, which can contribute to 

oral health issues and malocclusions. This study aimed to propose a 

deep learning-based model for automatic detection of lip separation on 

orthodontic photographs.    

Materials and Methods: This retrospective observational study 

employed a balanced dataset of 800 clinical images, comprising 400 

cases of lip incompetence and 400 cases of lip competence. An auto-

cropping technique based on averaged manual cropping coordinates 

was used to isolate the lip region. The cropped images were resized to 

70×70 pixels and normalized before feeding into a novel attention-

based residual connection convolutional neural network (ARN-CNN). 

The model incorporated both residual connections and attention 

modules to enhance feature learning and training stability. Data 

augmentation (e.g., rotation and scaling) was applied to improve 

generalizability. Training was conducted using 5-fold cross-validation, 

with an external test set to evaluate performance and reduce 

overfitting. Metrics such as accuracy, precision, recall, F1 score, 

receiver-operating characteristic curve-area under the curve (ROC-

AUC), and a confusion matrix were used for performance evaluation.    

Results: The ARN-CNN achieved 95% accuracy on the test set. For the 

competent class, precision was 0.97, recall was 0.94, and F1 score was 

0.96. These values were 0.94, 0.96, and 0.95, respectively, for the 

incompetent class with an AUC of 0.98. 

Conclusion: The ARN-CNN model effectively identified lip 

incompetence, highlighting the potential of deep learning to support 

orthodontic diagnosis through image-based analysis.  
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Introduction 

Facial soft tissue analysis is essential for 

evaluation of maxillofacial growth. The 

correlation of soft tissue indices and skeletal and 

occlusal changes in malocclusions has been 

previously documented [1], indicating that soft 

tissue analysis can provide information about 

skeletal and dental abnormalities, serving as a 

diagnostic tool. However, orthodontists must 

consider soft tissue adaptation of patients in their 

treatment plans, considering soft tissue 

limitations in terms of esthetics, stability, and 

function [2]. 

One critical aspect of facial soft tissue analysis 

is assessment of lip competence and the role of lip 

incompetence in growth and development of the 

craniofacial complex [3, 4]. Incompetent lips are 

characterized by lip separation by more than 3-4 

mm [5], which can lead to significant oral 

complications due to inadequate lip sealing [6]. A 

relationship has been identified between 

incompetent lips and malocclusions, including 

vertical and sagittal skeletal and dental 

discrepancies [4]. In patients with normal 

occlusion who exhibit incompetent lips, 

dentofacial morphology is likely to be the 

underlying cause [1]. Thus, assessment of 

incompetent lips can provide important insights 

into the overall appearance and structure                  

of the face. 

Various methods, such as visual examination, 

cephalometric radiographs, and photography, are 

used to evaluate lip sealing [1, 7-11]. Recently, 

application of artificial intelligence (AI) has 

gained popularity for enhancement of the 

accuracy and efficiency in diagnosis and 

treatment planning [12]. AI, as a machine 

learning technology, learns from data and 

autonomously solves problems, offering rapid 

diagnosis and treatment planning capabilities. 

Deep learning, a subset of machine learning, 

utilizes multi-layered neural networks to 

automatically learn and represent complex 

patterns and features from large datasets, 

enabling advanced capabilities in tasks such as 

image recognition, natural language processing, 

and more [13]. Convolutional neural networks 

(CNNs) are a class of deep learning models 

specifically designed for image processing [14]. 

By leveraging convolutional layers, CNNs 

automatically extract and learn hierarchical 

features from raw image data, enabling the 

detection of complex patterns and structures. 

Their ability to capture spatial hierarchies makes 

them highly effective for tasks like image 

classification and object detection. One challenge 

encountered in measuring the magnitude of lip 

separation (which is considered abnormal if it 

exceeds 4 mm) on photographs is lack of a 

suitable millimeter-scale reference. Therefore, it 

would be ideal to develop a deep learning-based 

method for detection of lip incompetence                

on photographs.  

AI has shown promising applications in 

orthodontics, particularly in analyzing clinical 

photographs and assisting with diagnosis and 

treatment planning. AI models, especially CNNs, 

have demonstrated high accuracy in classifying 

orthodontic photographs according to their 

orientations [15]. These systems can also aid in 

detecting landmarks, categorizing dental 

crowding, and determining the necessity of tooth 

extraction with impressive precision [16]. AI has 

achieved state-of-the-art results in various 

orthodontic applications, including automated 

landmark detection on lateral cephalograms, 

skeletal classification, and decision-making 

regarding tooth extractions [17]. While AI shows 

potential to enhance orthodontic care by saving 

time and providing accuracy comparable to 

trained dentists, challenges remain in 

generalizability and standardization across 

studies [18]. As the field progresses, researchers 

are working towards implementing AI into 

clinical orthodontic workflows and addressing 

real-world evaluation concerns. 
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Considering the limited number of studies on 

the automatic detection of soft tissue problems 

on photographs using deep learning, this study 

was conducted to investigate lip competence 

through deep learning models, and also 

contribute to development of a fully automated 

system for generating a problem list in 

orthodontics. As a preliminary step, the present 

study aimed to develop a CNN model for 

automatic detection of lip incompetence on 

frontal and profile photographs. 

 

Materials and Methods 

Dataset preparation: 

This study was a retrospective observational 

study with a deep learning component. It was 

approved by the ethics committee of Shahid 

Beheshti University of Medical Sciences 

(IR.SBMU.DRC.REC.1402.102). Images that met 

the standard criteria for orthodontic 

photography were selected from the archives of 

the Orthodontics Department of Shahid Beheshti 

Dental School. These criteria included specific 

angles, natural head position, appropriate 

lighting, and high resolution, ensuring that all 

critical facial features, particularly the mouth and 

its surrounding areas, were clearly visible [19, 

20]. Each image was thoroughly reviewed and 

validated to ensure that it met the necessary 

standards for precise analysis. 

A dataset of 800 images (at rest, natural head 

position) was created, comprising of 400 images 

of patients with lip incompetence and 400 

patients with lip competence. The dataset 

included patients between 8 to 50 years of age, 

including 57% females and 43% males. Lip 

incompetence was defined as lip separation by 

more than 4 mm, based on the patients’ 

orthodontic records and direct clinical 

measurements. This process was validated by 

three experienced orthodontists. Next, the 

images were labeled according to the lip 

separation status (incompetent or competent) by 

three orthodontists, and a consensus approach 

was used to confirm labeling accuracy. 

All data were utilized for model training and 

validation through 5-fold cross-validation. To 

further evaluate the model's performance and 

mitigate overfitting, an additional test set 

comprising of 61 new profile images (25 images 

with lip incompetence and 36 images with lip 

competence) and 56 new frontal images (31 

images with lip incompetence and 25 images with 

lip competence) were collected after finalizing 

the model and hyperparameters. These test 

samples included images sourced from Shahid 

Beheshti Dental School. By separating the test 

data from the training and validation sets used in 

the 5-fold cross-validation, we ensured data 

leakage prevention and robust evaluation of the 

model's generalizability (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Pipeline of the study 

 

Importantly, the test data were evaluated only 

once to avoid any possibility of tuning the model 

based on the test results, thereby maintaining the 

integrity of the model's performance assessment. 

This approach ensured that the final evaluation 

reflected the model's true ability to generalize to 
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new, unseen data without any bias introduced by 

repeated testing or adjustments.  

Preprocessing: 

The image data underwent preprocessing. 

Both frontal and profile images contained 

significant extraneous regions outside the lip 

area. Therefore, we utilized a technique called 

"auto-crop" to separate the lip region (region of 

interest) on both frontal and profile images. To 

implement automatic cropping, we initially 

identified a rectangular region around the lip 

area on each image manually. Specifically, we 

determined a rectangular region within the lip 

area for each image (defined by 4 coordinates, 

including X and Y). Subsequently, we computed 

the average coordinates of these rectangle 

corners across the training samples to serve as 

the final coordinates for automatic image 

cropping. For each dimension (X and Y), this 

involved: 

• Calculating the mean start and end X 

coordinates relative to image width across all 

images. 

• Calculating the mean start and end Y 

coordinates relative to image height across all 

images. 

Considering potential variations in aspect 

ratios of the images, we used the following 

formula for automatic cropping of the lip area on 

profile and frontal images: 

• Frontal cropping area (rectangle): The 

average coordinates for start and end points 

on the image were defined as follows:  

o Start x = image width × 0.30  

o End x = image width × 0.72  

o Start y = image height × 0.60  

o End y = image height × 0.85 

• Profile cropping area (rectangle): The average 

coordinates for start and end points on the 

image were defined as follows:  

o Start x = image width × 0.65 

o End x = image width × 0.92  

o Start y = image height × 0.64 

o End y = image height × 0.91 

These values were determined by averaging 

the manually defined cropping coordinates 

across the training dataset. The formulae use 

relative proportions within the image rather than 

absolute dimensions. This ensures that, even with 

changes in aspect ratio, the cropped region 

remains close to the target area, effectively 

handling variations in image aspect ratio. These 

dimensions were derived from the average 

cropping regions observed in the training set of 

frontal and profile images. For the test images, 

cropping was performed automatically based on 

these average coordinates, without manual 

adjustment, ensuring consistency with the 

training phase. This approach enabled 

simultaneous evaluation of the automatic 

cropping process and the model's performance. 

Therefore, the auto-crop technique was 

employed while adhering to the standard 

principles of orthodontic photography on profile 

and frontal images (including head position, etc.), 

This method has limitations, which are discussed 

in the Discussion section. 

As the next step in the preprocessing pipeline, 

the images were converted to grayscale and then 

enhanced using contrast-limited adaptive 

histogram equalization (CLAHE) to mitigate 

contrast variations. CLAHE is a technique that 

enhances the contrast of images by adapting 

histogram equalization to local regions and 

limiting amplification of noise, which improves 

the visibility of features in both bright and dark 

areas [21]. CLAHE can enhance CNN learning as 

part of the data preprocessing pipeline, especially 

in cases where the data suffer from low contrast 

or uneven illumination [22-24]. Subsequently, 

the images were resized to 70x70 pixels and 

normalized (scaling pixel values between 0 and 

1) to prepare them for input into the CNN. We 

also applied various data augmentation 
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techniques, including rotation, horizontal flipping 

(for frontal images only), translation, scaling, and 

shearing (Figure 2). 

Model architecture: 

This study employed a hybrid architecture 

that integrates attention modules with residual 

connections [25] (ARN-CNN) (Figure 3). This 

model consists of two primary components: 

1. Attention module: 

   The attention module is designed to enhance 

feature representation by applying an attention 

mechanism. It includes Conv2D layers with 

specified filters, followed by ReLU and sigmoid 

activation functions. The attention mechanism is 

implemented by performing element-wise 

multiplication between the processed features 

and the original input. 

2. Residual block: 

Residual blocks are constructed using Conv2D 

layers with varying filter sizes and batch 

normalization. Each residual block is followed by 

the application of the attention module. Residual 

connections are incorporated to sum the output 

of Conv2D layers with the input tensor, 

facilitating improved gradient flow and feature 

learning. 

 

 

 

 

 

 

 

Figure  2. Data augmentation techniques applied in this 

study 

 

 

 

 

 

 

 

Figure 3. Proposed architecture. The final Dense layer 

reaches two probabilities: incompetence and competence 

The model processes inputs through a series 

of Conv2D layers, MaxPooling2D operations, and 

attention modules. Residual blocks, which form 

the central part of the network, progressively 

increase the filter size and count. The network 

concludes with Flatten, Dense, and Dropout 

layers to generate the final output, employing a 

softmax activation function for classification 

purposes. For comparative evaluation, we also 

utilized the ResNet50 architecture with fine-

tuned transfer learning. Regularization 

techniques were applied to control model 

complexity and prevent overfitting. Specifically, 

L2 regularization was applied to the Dense layer 

kernels to constrain the model's complexity, 

while L1 regularization was used for the activities 

and biases of the Dense layers to maintain 

simplicity and enhance generalization. These 

regularization strategies were implemented 

during training to improve model performance 

and reduce overfitting. 

Model training and evaluation: 

The coding for this project and training-

validation were conducted in Python 3.8 using 

TensorFlow 2.6 and Keras 2.4, utilizing a NVIDIA 

GeForce RTX 3090 graphics card. For validation, 

the 5-fold cross-validation method was 

employed. In this approach, the data were divided 

into 5 equal parts. In each training iteration, one 

of these parts served as the test data, while the 

remaining parts were used for training of the CNN 

model. The model was trained on the training 

data and evaluated on the test data. This process 

was repeated 5 times, with each part used once as 

the test data, and the average performance  

across these 5 iterations was reported as the 

validation metric. 

This method was beneficial for hyperparame-

ter tuning, which was performed using the Grid 

search technique. This involved optimizing 

parameters such as the number and size of filters 
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in Conv2D layers and attention modules, 

selecting the optimal optimizer for training the 

network (e.g., Adamax or Adam), learning rate 

determination, setting dropout rates to mitigate 

overfitting, and choosing kernel sizes for feature 

extraction from images. A dropout rate of 0.45 

and a learning rate of 0.001 were selected.     

These parameters were tuned by executing the 

model across all possible combinations and 

comparing the resulting accuracies on different 

validation sets. 

To prevent data leakage and ensure that the 

test data did not influence the model training 

process, the following measures were 

implemented: Test data were completely 

separated from the training and validation data. 

After finalizing the model and hyperparameters, 

independent test data were collected from other 

centers to ensure no influence or tuning based on 

the test data. The test data were evaluated only 

once to prevent model optimization based on test 

results, preserving the integrity of the final 

assessment. For the final evaluation, new and 

independent data were used, which were not 

involved in the training or validation phases at 

any point. 

Finally, the model was tested only once on 

separate test datasets collected independently 

from a dedicated center. The automatic cropping 

successfully cropped the correct region in all test 

data, clearly isolating the lip area. These datasets 

were classified by three orthodontists based on 

lip competence or incompetence. The model's 

performance on these test datasets reflected its 

final accuracy in this study. For the final analysis 

and evaluation of the model's performance, the 

following metrics were used: 

• Accuracy: The ratio of correctly classified 

samples to the total number of samples. 

Accuracy serves as the primary metric for 

evaluation of model performance. 

• Confusion matrix: Provides a detailed 

analysis of the results, including the number of 

true positives (TPs), false positives (FPs), true 

negatives (TNs), and false negatives (FNs) for 

each class. 

• Precision and recall: Calculated for each 

class, these metrics help evaluate the model's 

ability to correctly identify positive and 

negative samples. 

• F1-score: The harmonic mean of precision and 

recall, providing a balanced measure between 

the two. 

• Receiver-operating characteristic (ROC) 

curve and area under the curve (AUC): The 

ROC curve and the AUC assess the model's 

performance in distinguishing between 

classes [26]. 

• Log loss: Log loss is a metric used to evaluate 

the performance of probabilistic classification 

models, measuring the discrepancy between 

predicted probabilities and actual outcomes, 

with lower values indicating better model 

accuracy [27]. 

• Gradient-weighted class activation 

mapping (Grad CAM): Grad CAM  is a 

technique used in CNNs to visualize and 

interpret which regions of an input image are 

most influential in predicting the target class, 

providing insights into the model's decision-

making process [28, 29]. 

 

Results 

Table 1 presents the performance of ARN-CNN 

and ResNet50 models (profile and frontal 

images) on the test datasets. For profile images, 

ARN-CNN achieved a log loss of 0.17, F1-score of 

0.96, recall of 0.94, and precision of 0.97 for 

competent lips; while, ResNet50 had a log loss of 

0.18, F1-score of 0.96, recall of 0.97, and precision 

of 0.95. For incompetent lips, ARN-CNN scored a 

F1-score of 0.94, while ResNet50 scored 0.94. For 
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frontal images, ARN-CNN had a log loss of 0.05, 

F1-score of 0.98, recall of 1.00, and precision of 

0.96 for competent lips; while ResNet50 had a log 

loss of 0.08, F1-score of 0.98, recall of 1.00, and 

precision of 0.96. Both models showed similar 

performance, with ARN-CNN slightly 

outperforming ResNet50 in frontal view. 

Figures 4 and 5 correspond to the profile and 

frontal model performances, respectively. In 

Figures 4A and 4B, the learning curve graphs 

illustrate training and validation metrics 

including accuracy and loss for the profile 

classification model across epochs. Figure 4C 

displays a confusion matrix highlighting three 

misclassified samples among all test instances. An 

example of misclassification is provided in Figure 

4C, showing the probability percentage 

associated with competence and incompetence 

lips to be 57% and 43%, respectively. Figure 4D 

showcases the ROC curve and AUC value, 

providing a comprehensive evaluation of model 

performance. Figure 4E presents the model's 

confidence scores for each test sample, with 

incorrect classifications marked by red circles. 

The overall confidence level for the test data 

classification was 95%. In Figure 4's Grad CAM 

section, the images reveal the specific areas 

where the model concentrates its attention on 

selected test data samples. Additionally, in the 

Feature Maps section, an example of model input 

and output feature maps of each convolutional 

layer is presented for interpretation of             

model behavior. 

Figures 5A and 5B display the learning curve 

graphs for accuracy and loss during training and 

validation epochs for the frontal image 

classification model. Figure 5C exhibits a 

confusion matrix indicating one misclassified 

sample among all test instances. An example of 

misclassification is provided in Figure 5C, where 

the probability percentage related to competent 

and incompetent lips was 41% and 59%, 

respectively (correct label: incompetent). Figure 

5D presents the ROC curve and AUC value, 

providing an assessment of model performance 

on the frontal image classification task. Figure 5E 

shows the model's confidence scores for each test 

sample, with incorrect classifications marked by 

red circles. The overall confidence level for the 

test data classification was 97%. In Figure 5's 

Grad CAM section, the images highlight the 

regions where the model directs its attention to 

selected test data samples. Similarly, in the 

Feature Maps section, an example of model input 

and output feature maps of each convolutional 

layer is provided for interpretation of                 

model behavior. 

Figure 6 shows a comparison of Grad CAM 

across different models. It illustrates the regions 

of input images that each model emphasizes 

when making predictions, providing a visual 

comparison of how attention is allocated among 

different models. 

 
Table 1. Performance of ARN-CNN and ResNet50 models (profile and frontal) on the test datasets 

 

 Model Class Accuracy Precision Recall F1-Score Log loss 

Profile 

ARN-CNN 
Competent 0.95 0.97 0.94 0.96 

0.17 
Incompetent  0.92 0.96 0.94 

Resnet50 
Competent 0.95 0.95 0.97 0.96 

0.18 
Incompetent  0.96 0.92 0.94 

Frontal 

ARN-CNN 
Competent 0.98 0.96 1.00 0.98 

0.05 
Incompetent  1.00 0.97 0.98 

Resnet50 
Competent 0.98 0.96 1.00 0.98 

0.08 
Incompetent  1.00 0.97 0.98 
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Figure 4. Performance of the profile image classification model on the test data 
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Figure 5.  Performance of the frontal image classification model on the test data 
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Figure 6. Comparison of Grad CAM across different models 

 
Discussion  

This study aimed to design and develop an AI 

model for automatic detection of lip 

incompetence, with performance evaluated on a 

separate test dataset. The results demonstrated 

that the model was more efficient for detecting lip 

incompetence on the frontal view compared to 

the profile view. Although both architectures 

showed similar performance levels, Grad CAM 

visualizations revealed that the ARN-CNN 

architecture specifically focused on lip areas 

when detecting lip separation. The trained model 

of this study was integrated into an orthodontic 

diagnostic software developed in C# within the 

Visual Studio environment.  

Lip incompetence, which exposes the teeth 

and increases the risk of traumatic dental injuries 

[30], can also lead to gingivitis and periodontal 

disease due to constant mouth breathing [6]. 

Proper lip closure is essential for maintaining 

oral health by preventing excessive gingival and 

tooth show. Clinicians addressing lip 

incompetence should consider factors such as 

airway obstructions, protruded upper incisors, 

and skeletal abnormalities, as correcting these 

issues can enhance lip competence and overall 

oral function. AI algorithms, when trained on 

extensive datasets of lip incompetence cases, 

have the potential to improve the detection of 

subtle signs associated with this condition [31]. 

By analyzing facial images, including lip position 

and movement, AI systems could offer valuable 

diagnostic insights and quantify lip parameters 

such as height, symmetry, and dynamics, 

complementing traditional clinical evaluations.  

To remove extraneous regions from the 

images, we utilized an automatic cropping (auto-

crop) technique. Despite its effectiveness, the 

automatic cropping method may struggle with 

extreme variations in facial positioning or image 

quality, potentially leading to suboptimal 

cropping in certain cases. Additionally, reliance 

on fixed proportional coordinates may not 

account for all individual variations in lip 

positioning, which could affect accuracy. If the 

images do not adhere to the standards of 
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orthodontic photography, this issue may become 

more pronounced. Comparison of our automatic 

image cropping method with Al-Mahadeen et al.'s 

[32] approach reveals notable differences. Our 

method relies on fixed relative proportions based 

on image dimensions, ensuring consistent 

cropping across varying aspect ratios and 

simplifying implementation. Conversely, Al-

Mahadeen et al.'s method [32] employs pixel-

based object detection to define cropping 

coordinates, which can achieve higher accuracy 

in targeting specific features but involves greater 

complexity. However, this method successfully 

performed automatic cropping on all test data, 

ensuring consistency and accuracy throughout 

the testing phase. For future studies, it is 

recommended to use the MediaPipe model [33] 

for more accurate facial landmark detection and 

cropping, which can adapt better to individual 

variations and maintain higher precision in 

diverse image conditions. In addition to our 

method and Al-Mahadeen et al.'s approach [32], 

other prominent image cropping methods 

include R-CNN, Fast R-CNN, Faster R-CNN, YOLO, 

and deformable part models, each offering 

distinct advantages [34]. However, the method 

discussed in the present study performed well on 

separate test data and appears well-suited for 

orthodontic photography, adhering to a       

specific standard. 

Several studies have explored AI accuracy in 

orthodontics [35, 36]. For example, Yu et al. [37] 

developed a robust skeletal diagnostic system 

using CNNs with lateral cephalograms. 

Nakornnoi and Chanmanee [38] assessed the 

accuracy of Digital Imaging software in predicting 

soft tissue changes during orthodontic 

treatments, including non-extraction and 

extraction treatments, and orthognathic surgery. 

Jeong et al. [39] demonstrated that CNNs could 

accurately assess soft tissue profiles for 

orthognathic surgery using only facial 

photographs, which aligns with our findings. 

However, their study would benefit from a larger 

sample size to enhance accuracy. Tanikawa and 

Yamashiro [40] confirmed the clinical 

acceptability of AI systems in predicting facial 

morphology post-treatment, consistent with our 

results. The novelty of our research lies in its 

focus on AI for detecting lip incompetence, an 

area previously unexplored. Our study utilized 

deep learning techniques that are well-

recognized and widely applied in both research 

and industry. Reinforcement learning algorithms, 

which have been utilized in the medical field to 

optimize clinical diagnostic algorithms, hold 

significant potential for advancing clinical 

orthodontics in the future [41]. A significant 

challenge is the availability of extensive datasets, 

which is crucial for training effective AI models 

due to ethical and confidentiality concerns [42]. 

The present study highlights the potential of 

deep learning for automated lip competence 

analysis using orthodontic photographs. Given 

that these models are classification-based, future 

research should consider exploring regression 

methods and key point detection techniques for 

enhanced accuracy. Further research should 

evaluate the method’s efficacy and accuracy in 

patients with malocclusions, variations in vertical 

dimension, and craniofacial issues. Expanding 

this analysis to include frontal and profile images, 

as well as cephalometric radiographs, with larger 

sample sizes, could improve predictive models 

and explore changes in orthodontic metrics. AI’s 

role in medicine is evolving from associative 

inference to predictive treatment planning, and 

enhancing the interpretability of deep learning 

models will provide deeper insights into these 

predictions. AI models require robust training 

data and validation to ensure reliable 

performance. Ethical considerations, patient 

privacy, and informed consent are paramount in 

clinical AI applications. AI should complement, 

not replace, clinical judgment, and collaboration 
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with experts in AI and oral medicine is crucial for 

successful implementation [21, 43]. 

 

Conclusion 

This study demonstrated the significant 

potential of deep learning algorithms for 

automated detection of lip incompetence on 

orthodontic photographs. While AI presents 

promising advancements in the analysis and 

detection of lip incompetence, ongoing research 

and development are essential to refine these 

models and ensure their practical utility in 

clinical settings. 
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