دوره 3، شماره 3 - ( 5-1397 )                   جلد 3 شماره 3 صفحات 48-42 | برگشت به فهرست نسخه ها


XML Print


چکیده:   (3152 مشاهده)
Background and Aim: The mismatch of the implant-abutment connection can produce instant stress and microleakage which result in mechanical and biological complications. This study aimed to investigate the influence of GapSeal® as a sealing material on the extent of microgap and microleakage at the external hexagon implant platform following cyclic loading.
Materials and Methods: Sixteen implants with an external-hexagon connection (BioHorizons External dental implant) were employed in this in-vitro experimental study. All implant-abutment sets were assigned to two groups and were molded in acrylic resins. GapSeal® was injected into the implants in the experimental (test) group. Then, implant assemblies were tightened with the torque of 30 N/cm, and 1200,000 loading cycles with the force of 100 N and the frequency of 1 Hz were applied. Every sample was immersed in a methylene blue dye to evaluate microleakage. Microgap was measured in six regions randomly using a scanning electron microscope (SEM). The data were entered into SPSS 22 and were analyzed using t-test.
Results: The mean±SD microgap was 0.87±0.35 µm and 3.43±1.61 µm in the test and control groups, respectively. Methylene blue dye was observed in all of the specimens of the control group, while no liquid was seen in the test group. A significant statistical difference was found between the groups regarding the microgap and microleakage (P<0.0001).
Conclusion: Application of GapSeal® reduced the dimension of the microgap and decreased microleakage at the implant-abutment interface.
متن کامل [PDF 372 kb]   (1390 دریافت)    
نوع مطالعه: Original article | موضوع مقاله: Dental implant

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.